Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[Cherry-Pick] [OPs] Bug fix, fix the segment mean for illegal syncthreads usage. #32610

Merged
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
116 changes: 78 additions & 38 deletions paddle/fluid/operators/math/segment_pooling.cu
Original file line number Diff line number Diff line change
Expand Up @@ -25,14 +25,12 @@ namespace operators {
using Tensor = framework::Tensor;

template <typename T, typename Index, int DimTileSize>
__global__ void SegmentMeanCustomKernel(
const Index* segment_ids, const T* input, T* output, T* summed_ids,
const Index input_length_size, const Index inner_dim_size,
const Index output_length_size, const Index total_stripe_count) {
__global__ void SegmentSumIdsKernel(const Index* segment_ids, T* summed_ids,
const Index input_length_size,
const Index total_stripe_count) {
CUDA_KERNEL_LOOP(stripe_index, total_stripe_count) {
const Index segment_offset = stripe_index % inner_dim_size;
const Index dim_index_base =
stripe_index / inner_dim_size * Index(DimTileSize);
const Index segment_offset = stripe_index;
const Index dim_index_base = stripe_index * Index(DimTileSize);
const Index actual_height =
min(Index(DimTileSize), input_length_size - dim_index_base);

Expand All @@ -41,53 +39,81 @@ __global__ void SegmentMeanCustomKernel(
if (dim_index_base > 0) {
last_segment_id = segment_ids[dim_index_base - 1];
}
if (segment_offset == 0) {
T sum = T(0);
for (Index j = 0; j < actual_height; j++) {
Index current_segment_id = segment_ids[dim_index_base + j];
// Note(ZHUI): following check may cause
// cudaErrorLaunchOutOfResources.
// PADDLE_ENFORCE(current_segment_id >= last_segment_id,
// "the segment ids should be sorted, but got "
// "segment_ids[%d]:%d > segment_ids[%d]:%d.",
// dim_index_base + j - 1, dim_index_base + j,
// last_segment_id, current_segment_id);

if (j > 0 && current_segment_id > last_segment_id) {
T sum = T(0);
for (Index j = 0; j < actual_height; j++) {
Index current_segment_id = segment_ids[dim_index_base + j];
PADDLE_ENFORCE(current_segment_id >= last_segment_id,
"the segment ids should be sorted, but got "
"segment_ids[%d]:%d > segment_ids[%d]:%d.",
dim_index_base + j - 1, dim_index_base + j,
last_segment_id, current_segment_id);
if (current_segment_id > last_segment_id) {
for (Index interval_id = last_segment_id + 1;
interval_id < current_segment_id; ++interval_id) {
*(summed_ids + interval_id) = 0;
}
if (j > 0) {
if (last_segment_id == first_segment_id) {
platform::CudaAtomicAdd(summed_ids + last_segment_id, sum);
} else {
*(summed_ids + last_segment_id) = sum;
}
sum = T(0);
}
sum += T(1);
last_segment_id = current_segment_id;
}
platform::CudaAtomicAdd(summed_ids + last_segment_id, sum);
sum += T(1);
last_segment_id = current_segment_id;
}
platform::CudaAtomicAdd(summed_ids + last_segment_id, sum);
}
}

template <typename T, typename Index, int DimTileSize>
__global__ void SegmentMeanKernel(const Index* segment_ids, const T* input,
T* output, T* summed_ids,
const Index input_length_size,
const Index inner_dim_size,
const Index output_length_size,
const Index total_stripe_count) {
CUDA_KERNEL_LOOP(stripe_index, total_stripe_count) {
const Index segment_offset = stripe_index % inner_dim_size;
const Index dim_index_base =
stripe_index / inner_dim_size * Index(DimTileSize);
const Index actual_height =
min(Index(DimTileSize), input_length_size - dim_index_base);

Index first_segment_id = segment_ids[dim_index_base];
Index last_segment_id = -1;
if (dim_index_base > 0) {
last_segment_id = segment_ids[dim_index_base - 1];
}
// ensure last_segment_id is the largest
last_segment_id = output_length_size;
__syncthreads();
T sum = T(0);
for (Index j = 0; j < actual_height; j++) {
Index current_segment_id = segment_ids[dim_index_base + j];
if (current_segment_id > last_segment_id) {
const Index output_index =
last_segment_id * inner_dim_size + segment_offset;
if (last_segment_id == first_segment_id) {
platform::CudaAtomicAdd(output + output_index,
sum / *(summed_ids + last_segment_id));
} else {
*(output + output_index) = sum / *(summed_ids + last_segment_id);
// reset the interval value which do not have corresponding ids.
for (Index interval_id = last_segment_id + 1;
interval_id < current_segment_id; ++interval_id) {
*(output + interval_id * inner_dim_size + segment_offset) = T(0);
}

if (j > 0) {
Index output_index =
last_segment_id * inner_dim_size + segment_offset;

if (last_segment_id == first_segment_id) {
platform::CudaAtomicAdd(output + output_index,
sum / *(summed_ids + last_segment_id));
} else {
*(output + output_index) = sum / *(summed_ids + last_segment_id);
}
sum = T(0);
}
sum = T(0);
}
sum += input[(dim_index_base + j) * inner_dim_size + segment_offset];
last_segment_id = current_segment_id;
}
const Index output_index =
last_segment_id * inner_dim_size + segment_offset;
Index output_index = last_segment_id * inner_dim_size + segment_offset;
platform::CudaAtomicAdd(output + output_index,
sum / *(summed_ids + last_segment_id));
}
Expand Down Expand Up @@ -122,7 +148,7 @@ __global__ void SegmentOpsKernel(const Index* segment_ids, const T* input,
// reset the interval value which do not have corresponding ids.
for (Index interval_id = last_segment_id + 1;
interval_id < current_segment_id; ++interval_id) {
*(output + interval_id * inner_dim_size + segment_offset) = 0;
*(output + interval_id * inner_dim_size + segment_offset) = T(0);
}
// don't update result when j=0
if (j > 0) {
Expand Down Expand Up @@ -272,11 +298,25 @@ class SegmentPoolFunctor<platform::CUDADeviceContext, T, IndexT> {
framework::Tensor* output,
framework::Tensor* summed_ids = nullptr,
const std::string pooltype = "SUM") {
if (pooltype == "MEAN") {
// Sum the segment id num first
T DimTileSize = 8;
auto input_length_size = segment_ids.numel();
auto total_stripe_count =
(input_length_size + DimTileSize - 1) / DimTileSize;
auto config = platform::GetGpuLaunchConfig1D(ctx, total_stripe_count);
SegmentSumIdsKernel<
T, IndexT, IndexT(8)><<<config.block_per_grid.x,
config.thread_per_block.x, 0, ctx.stream()>>>(
segment_ids.data<IndexT>(), summed_ids->data<T>(), input_length_size,
total_stripe_count);
}

auto h = ArrangeHelper<IndexT>(input.numel(), segment_ids.dims()[0],
output->dims()[0]);
auto config = platform::GetGpuLaunchConfig1D(ctx, h.total_stripe_count);
if (pooltype == "MEAN") {
SegmentMeanCustomKernel<
SegmentMeanKernel<
T, IndexT, IndexT(8)><<<config.block_per_grid.x,
config.thread_per_block.x, 0, ctx.stream()>>>(
segment_ids.data<IndexT>(), input.data<T>(), output->data<T>(),
Expand Down