Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Combine amp and qat #33484

Merged
merged 8 commits into from
Jun 21, 2021
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
17 changes: 15 additions & 2 deletions paddle/fluid/imperative/amp_auto_cast.cc
Original file line number Diff line number Diff line change
Expand Up @@ -141,7 +141,7 @@ static inline std::shared_ptr<imperative::VarBase> CastToFP32(
}

static inline framework::proto::VarType::Type GetPromoteType(
const NameVarBaseMap& ins) {
const std::string& op_type, const NameVarBaseMap& ins) {
auto dst_type = framework::proto::VarType::FP16;
for (const auto& pair : ins) {
for (const auto& var : pair.second) {
Expand All @@ -151,6 +151,18 @@ static inline framework::proto::VarType::Type GetPromoteType(
}
}
}

// NOTE(juncai): moving_average_abs_max_scale only consider the
// dtype of input(X)
if (op_type == "moving_average_abs_max_scale") {
for (const auto& pair : ins) {
if (pair.first == "X" &&
pair.second.front()->DataType() == framework::proto::VarType::FP16) {
dst_type = framework::proto::VarType::FP16;
}
}
}

return dst_type;
}

Expand Down Expand Up @@ -183,7 +195,8 @@ NameVarBaseMap AutoCastInputs(const std::string& op_type,
}
return new_ins;
} else {
auto dst_type = GetPromoteType(ins);
auto dst_type = GetPromoteType(op_type, ins);

// NOTE(zhiqiu): if the op has op fp16 kernel, fall back to fp32.
if (dst_type == framework::proto::VarType::FP16 &&
AmpOperators::Instance().GetMutableUnsupportedFp16Ops()->count(
Expand Down
44 changes: 27 additions & 17 deletions paddle/fluid/operators/fake_quantize_op.cu
Original file line number Diff line number Diff line change
Expand Up @@ -25,18 +25,19 @@ __global__ void FindAbsMaxKernel(const T* in, const int n, T* out) {
int bid = threadIdx.x + blockIdx.x * blockDim.x;
int tid = threadIdx.x;

extern __shared__ T shared_max_data[];
extern __shared__ char* shared_max_data_tmp[];
auto shared_max_data = reinterpret_cast<T*>(shared_max_data_tmp);
if (gridDim.x > 1) {
shared_max_data[tid] = T(0);
for (int i = bid; i < n; i += blockDim.x * gridDim.x) {
T tmp = fabs(in[i]);
T tmp = abs(in[i]);
if (tmp > shared_max_data[tid]) {
shared_max_data[tid] = tmp;
}
}
} else {
if (bid < n) {
shared_max_data[tid] = fabs(in[bid]);
shared_max_data[tid] = abs(in[bid]);
} else {
shared_max_data[tid] = T(0);
}
Expand Down Expand Up @@ -73,6 +74,8 @@ struct FindAbsMaxFunctor<platform::CUDADeviceContext, T> {
};

template struct FindAbsMaxFunctor<platform::CUDADeviceContext, float>;
template struct FindAbsMaxFunctor<platform::CUDADeviceContext,
paddle::platform::float16>;

template <typename T>
__global__ void FindChannelAbsMaxKernelQuantAxis0(const T* in, const int n,
Expand Down Expand Up @@ -213,13 +216,16 @@ __global__ void ClipAndQuantDequantKernel(const T* in, const T* scale,
int tid = threadIdx.x;

T s = scale[0];
T inv_s = inverse(s);
T bin_cnt_t = static_cast<T>(bin_cnt);

for (int i = bid; i < n; i += blockDim.x * gridDim.x) {
T x = in[i];
T v = x > s ? s : x;
v = v < -s ? -s : v;
v = bin_cnt * inv_s * v;
out[i] = round(v) * s / bin_cnt;
x = x > s ? s : x;
x = x < -s ? -s : x;
x = (bin_cnt_t / s) * x;

x = static_cast<T>(round(static_cast<float>(x)));
out[i] = (x * s) / bin_cnt_t;
}
}

Expand Down Expand Up @@ -261,9 +267,6 @@ struct ClipAndFakeQuantDequantFunctor<platform::CUDADeviceContext, T> {
}
};

template struct ClipAndFakeQuantDequantFunctor<platform::CUDADeviceContext,
float>;

// ChannelClipAndQuantKernel for quant_axis is 0
template <typename T>
__global__ void ChannelClipAndQuantKernelQuantAxis0(const T* in, const T* scale,
Expand Down Expand Up @@ -423,8 +426,10 @@ struct FindMovingAverageAbsMaxFunctor<platform::CUDADeviceContext, T> {
memory::Copy(platform::CPUPlace(), &scale, gpu_place, cur_scale, sizeof(T),
ctx.stream());
ctx.Wait();
state = rate * state + 1;
accum = rate * accum + scale;

T rate_t = static_cast<T>(rate);
state = rate_t * state + static_cast<T>(1.0);
accum = rate_t * accum + scale;
scale = accum / state;

memory::Copy(gpu_place, out_accum->mutable_data<T>(gpu_place),
Expand Down Expand Up @@ -527,10 +532,12 @@ template struct ChannelClipFakeQuantDequantFunctor<platform::CUDADeviceContext,

namespace ops = paddle::operators;
using CUDA = paddle::platform::CUDADeviceContext;
using float16 = paddle::platform::float16;
REGISTER_OP_CUDA_KERNEL(fake_quantize_abs_max,
ops::FakeQuantizeAbsMaxKernel<CUDA, float>);
REGISTER_OP_CUDA_KERNEL(fake_quantize_dequantize_abs_max,
ops::FakeQuantizeDequantizeAbsMaxKernel<CUDA, float>);
ops::FakeQuantizeDequantizeAbsMaxKernel<CUDA, float>,
ops::FakeQuantizeDequantizeAbsMaxKernel<CUDA, float16>);
REGISTER_OP_CUDA_KERNEL(fake_channel_wise_quantize_abs_max,
ops::FakeChannelWiseQuantizeAbsMaxKernel<CUDA, float>);
REGISTER_OP_CUDA_KERNEL(fake_quantize_range_abs_max,
Expand All @@ -539,12 +546,15 @@ REGISTER_OP_CUDA_KERNEL(
fake_quantize_moving_average_abs_max,
ops::FakeQuantizeMovingAverageAbsMaxKernel<CUDA, float>);
REGISTER_OP_CUDA_KERNEL(moving_average_abs_max_scale,
ops::MovingAverageAbsMaxScaleKernel<CUDA, float>);
ops::MovingAverageAbsMaxScaleKernel<CUDA, float>,
ops::MovingAverageAbsMaxScaleKernel<CUDA, float16>);
REGISTER_OP_CUDA_KERNEL(
fake_quantize_dequantize_moving_average_abs_max,
ops::FakeQuantizeDequantizeMovingAverageAbsMaxKernel<CUDA, float>);
ops::FakeQuantizeDequantizeMovingAverageAbsMaxKernel<CUDA, float>,
ops::FakeQuantizeDequantizeMovingAverageAbsMaxKernel<CUDA, float16>);
REGISTER_OP_CUDA_KERNEL(stright_throuth_estimator_grad,
ops::StrightThroughEstimatorGradKernel<CUDA, float>);
ops::StrightThroughEstimatorGradKernel<CUDA, float>,
ops::StrightThroughEstimatorGradKernel<CUDA, float16>);
REGISTER_OP_CUDA_KERNEL(
fake_channel_wise_quantize_dequantize_abs_max,
ops::FakeChannelWiseQuantizeDequantizeAbsMaxKernel<CUDA, float>);
1 change: 1 addition & 0 deletions python/paddle/fluid/contrib/slim/tests/CMakeLists.txt
Original file line number Diff line number Diff line change
Expand Up @@ -127,6 +127,7 @@ if(WIN32)
list(REMOVE_ITEM TEST_OPS test_post_training_quantization_lstm_model)
list(REMOVE_ITEM TEST_OPS test_weight_quantization_mobilenetv1)
list(REMOVE_ITEM TEST_OPS test_quantize_transpiler_v2)
list(REMOVE_ITEM TEST_OPS test_imperative_qat_amp)
endif()

if(LINUX AND WITH_MKLDNN)
Expand Down
222 changes: 222 additions & 0 deletions python/paddle/fluid/contrib/slim/tests/test_imperative_qat_amp.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,222 @@
# copyright (c) 2018 paddlepaddle authors. all rights reserved.
#
# licensed under the apache license, version 2.0 (the "license");
# you may not use this file except in compliance with the license.
# you may obtain a copy of the license at
#
# http://www.apache.org/licenses/license-2.0
#
# unless required by applicable law or agreed to in writing, software
# distributed under the license is distributed on an "as is" basis,
# without warranties or conditions of any kind, either express or implied.
# see the license for the specific language governing permissions and
# limitations under the license.

from __future__ import print_function

import os
import numpy as np
import random
import shutil
import time
import unittest
import logging

import paddle
import paddle.fluid as fluid
from paddle.fluid.contrib.slim.quantization import ImperativeQuantAware
from paddle.fluid.log_helper import get_logger
from paddle.dataset.common import download

from imperative_test_utils import fix_model_dict, ImperativeLenet

os.environ["CPU_NUM"] = "1"
if paddle.is_compiled_with_cuda():
fluid.set_flags({"FLAGS_cudnn_deterministic": True})

_logger = get_logger(
__name__, logging.INFO, fmt='%(asctime)s-%(levelname)s: %(message)s')


class TestImperativeQatAmp(unittest.TestCase):
"""
Test the combination of qat and amp.
"""

@classmethod
def setUpClass(cls):
timestamp = time.strftime('%Y-%m-%d-%H-%M-%S', time.localtime())
cls.root_path = os.path.join(os.getcwd(),
"imperative_qat_amp_" + timestamp)
cls.save_path = os.path.join(cls.root_path, "model")

cls.download_path = 'dygraph_int8/download'
cls.cache_folder = os.path.expanduser('~/.cache/paddle/dataset/' +
cls.download_path)

cls.lenet_url = "https://paddle-inference-dist.cdn.bcebos.com/int8/unittest_model_data/lenet_pretrained.tar.gz"
cls.lenet_md5 = "953b802fb73b52fae42896e3c24f0afb"

seed = 1
np.random.seed(seed)
paddle.static.default_main_program().random_seed = seed
paddle.static.default_startup_program().random_seed = seed

@classmethod
def tearDownClass(cls):
try:
shutil.rmtree(cls.root_path)
except Exception as e:
print("Failed to delete {} due to {}".format(cls.root_path, str(e)))

def cache_unzipping(self, target_folder, zip_path):
if not os.path.exists(target_folder):
cmd = 'mkdir {0} && tar xf {1} -C {0}'.format(target_folder,
zip_path)
os.system(cmd)

def download_model(self, data_url, data_md5, folder_name):
download(data_url, self.download_path, data_md5)
file_name = data_url.split('/')[-1]
zip_path = os.path.join(self.cache_folder, file_name)
print('Data is downloaded at {0}'.format(zip_path))

data_cache_folder = os.path.join(self.cache_folder, folder_name)
self.cache_unzipping(data_cache_folder, zip_path)
return data_cache_folder

def set_vars(self):
self.qat = ImperativeQuantAware()

self.train_batch_num = 30
self.train_batch_size = 32
self.test_batch_num = 100
self.test_batch_size = 32
self.eval_acc_top1 = 0.99

def model_train(self, model, batch_num=-1, batch_size=32, use_amp=False):
model.train()

train_reader = paddle.batch(
paddle.dataset.mnist.train(), batch_size=batch_size)
adam = paddle.optimizer.Adam(
learning_rate=0.001, parameters=model.parameters())
scaler = paddle.amp.GradScaler(init_loss_scaling=500)

for batch_id, data in enumerate(train_reader()):
x_data = np.array([x[0].reshape(1, 28, 28)
for x in data]).astype('float32')
y_data = np.array(
[x[1] for x in data]).astype('int64').reshape(-1, 1)

img = paddle.to_tensor(x_data)
label = paddle.to_tensor(y_data)

if use_amp:
with paddle.amp.auto_cast():
out = model(img)
acc = fluid.layers.accuracy(out, label)
loss = fluid.layers.cross_entropy(out, label)
avg_loss = fluid.layers.mean(loss)
scaled_loss = scaler.scale(avg_loss)
scaled_loss.backward()

scaler.minimize(adam, scaled_loss)
adam.clear_gradients()
else:
out = model(img)
acc = fluid.layers.accuracy(out, label)
loss = fluid.layers.cross_entropy(out, label)
avg_loss = fluid.layers.mean(loss)
avg_loss.backward()

adam.minimize(avg_loss)
model.clear_gradients()

if batch_id % 100 == 0:
_logger.info("Train | step {}: loss = {:}, acc= {:}".format(
batch_id, avg_loss.numpy(), acc.numpy()))

if batch_num > 0 and batch_id + 1 >= batch_num:
break

def model_test(self, model, batch_num=-1, batch_size=32, use_amp=False):
model.eval()

test_reader = paddle.batch(
paddle.dataset.mnist.test(), batch_size=batch_size)

acc_top1_list = []
for batch_id, data in enumerate(test_reader()):
x_data = np.array([x[0].reshape(1, 28, 28)
for x in data]).astype('float32')
y_data = np.array(
[x[1] for x in data]).astype('int64').reshape(-1, 1)

img = paddle.to_tensor(x_data)
label = paddle.to_tensor(y_data)

with paddle.amp.auto_cast(use_amp):
out = model(img)
acc_top1 = fluid.layers.accuracy(input=out, label=label, k=1)
acc_top5 = fluid.layers.accuracy(input=out, label=label, k=5)

acc_top1_list.append(float(acc_top1.numpy()))
if batch_id % 100 == 0:
_logger.info("Test | At step {}: acc1 = {:}, acc5 = {:}".format(
batch_id, acc_top1.numpy(), acc_top5.numpy()))

if batch_num > 0 and batch_id + 1 >= batch_num:
break

acc_top1 = sum(acc_top1_list) / len(acc_top1_list)
return acc_top1

def test_ptq(self):
start_time = time.time()

self.set_vars()

params_path = self.download_model(self.lenet_url, self.lenet_md5,
"lenet")
params_path += "/lenet_pretrained/lenet.pdparams"

with fluid.dygraph.guard():
model = ImperativeLenet()
model_state_dict = paddle.load(params_path)
model.set_state_dict(model_state_dict)

_logger.info("Test fp32 model")
fp32_acc_top1 = self.model_test(model, self.test_batch_num,
self.test_batch_size)

self.qat.quantize(model)

use_amp = True
self.model_train(model, self.train_batch_num, self.train_batch_size,
use_amp)

_logger.info("Test int8 model")
int8_acc_top1 = self.model_test(model, self.test_batch_num,
self.test_batch_size, use_amp)

_logger.info('fp32_acc_top1: %f, int8_acc_top1: %f' %
(fp32_acc_top1, int8_acc_top1))
self.assertTrue(
int8_acc_top1 > fp32_acc_top1 - 0.01,
msg='fp32_acc_top1: %f, int8_acc_top1: %f' %
(fp32_acc_top1, int8_acc_top1))

input_spec = [
paddle.static.InputSpec(
shape=[None, 1, 28, 28], dtype='float32')
]
paddle.jit.save(layer=model, path=self.save_path, input_spec=input_spec)
print('Quantized model saved in {%s}' % self.save_path)

end_time = time.time()
print("total time: %ss" % (end_time - start_time))


if __name__ == '__main__':
unittest.main()
2 changes: 2 additions & 0 deletions python/paddle/fluid/dygraph/amp/auto_cast.py
Original file line number Diff line number Diff line change
Expand Up @@ -29,6 +29,8 @@
'matmul',
'matmul_v2',
'mul',
'fake_quantize_dequantize_abs_max',
'fake_quantize_dequantize_moving_average_abs_max',
}

# The set of ops that support fp16 calculation and are considered numerically-
Expand Down