Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Added PRelu BF16/FP32 FWD/BWD kernels #33878

Merged
merged 25 commits into from
Jul 7, 2021
Merged
Show file tree
Hide file tree
Changes from 9 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
25 changes: 20 additions & 5 deletions paddle/fluid/framework/ir/graph_pattern_detector.cc
Original file line number Diff line number Diff line change
Expand Up @@ -2262,11 +2262,26 @@ PDNode *patterns::QuantizePlacement::operator()(
PDNode *patterns::Bfloat16Placement::operator()(
const std::unordered_set<std::string> &bfloat16_enabled_op_types) {
std::unordered_set<std::string> supported_op_types =
std::unordered_set<std::string>(
{"concat", "conv2d", "conv2d_transpose", "elementwise_add",
"elementwise_mul", "fc", "fusion_gru", "fusion_lstm", "gelu",
"layer_norm", "matmul", "matmul_v2", "pool2d", "relu", "reshape2",
"softmax", "split", "sum", "transpose2"});
std::unordered_set<std::string>({"concat",
"conv2d",
"conv2d_transpose",
"elementwise_add",
"elementwise_mul",
"fc",
"fusion_gru",
"fusion_lstm",
"gelu",
"layer_norm",
"matmul",
"matmul_v2",
"pool2d",
"prelu",
"relu",
"reshape2",
"softmax",
"split",
"sum",
"transpose2"});
jakpiase marked this conversation as resolved.
Show resolved Hide resolved
if (!bfloat16_enabled_op_types.empty()) {
supported_op_types = bfloat16_enabled_op_types;
}
Expand Down
162 changes: 162 additions & 0 deletions paddle/fluid/operators/mkldnn/prelu_mkldnn_op.cc
Original file line number Diff line number Diff line change
@@ -0,0 +1,162 @@
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/platform/mkldnn_reuse.h"

namespace paddle {
namespace operators {

using dnnl::memory;
using framework::Tensor;
using platform::GetMKLDNNFormat;
using platform::MKLDNNDeviceContext;
using platform::MKLDNNGetDataType;
using platform::to_void_cast;

template <typename T>
class PReluMKLDNNHandler
jakpiase marked this conversation as resolved.
Show resolved Hide resolved
: public platform::MKLDNNHandlerT<T, dnnl::prelu_forward,
dnnl::prelu_backward> {
public:
PReluMKLDNNHandler(const MKLDNNDeviceContext& dev_ctx,
const mkldnn::engine engine, platform::Place cpu_place,
const Tensor* x, const Tensor* weights,
const std::string& uniq_name, bool is_test = false)
: platform::MKLDNNHandlerT<T, dnnl::prelu_forward, dnnl::prelu_backward>(
dev_ctx, engine, cpu_place,
platform::CreateKey(dev_ctx, framework::vectorize(x->dims()),
uniq_name)) {
if (!this->isCached()) {
auto x_md = memory::desc(framework::vectorize(x->dims()),
MKLDNNGetDataType<T>(), x->format());
auto weights_md =
memory::desc(framework::vectorize(weights->dims()),
MKLDNNGetDataType<T>(), memory::format_tag::any);
jakpiase marked this conversation as resolved.
Show resolved Hide resolved

this->AcquireForwardPrimitiveDescriptor(dnnl::prop_kind::forward_training,
x_md, weights_md);
if (!is_test)
this->AcquireBackwardPrimitiveDescriptor(x_md, weights_md, x_md,
weights_md);
}
}

std::shared_ptr<memory> AcquireWeightsMemoryWithReorder(const Tensor* input,
const bool is_test) {
const T* input_data = input->data<T>();
auto user_weights_md =
memory::desc(framework::vectorize(input->dims()),
jakpiase marked this conversation as resolved.
Show resolved Hide resolved
MKLDNNGetDataType<T>(), input->format());
return this->AcquireMemoryWithReorder(
user_weights_md, this->fwd_pd_->weights_desc(),
to_void_cast<T>(input_data), "@alpha_mem_p", is_test);
}

std::shared_ptr<memory> AcquireDiffWeightsMemory(Tensor* output) {
T* output_data = output->mutable_data<T>(
this->place_, this->bwd_pd_->diff_weights_desc().get_size());
return this->AcquireMemoryFromPrimitive(this->bwd_pd_->diff_weights_desc(),
output_data, "@diff_weights_mem_p");
}
};

template <typename T>
class PReluMKLDNNKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& ctx) const override {
this->RunKernel(ctx);
}

void RunKernel(const framework::ExecutionContext& ctx) const {
jakpiase marked this conversation as resolved.
Show resolved Hide resolved
const auto& dev_ctx = ctx.template device_context<MKLDNNDeviceContext>();
const auto& onednn_engine = dev_ctx.GetEngine();

const auto* x = ctx.Input<Tensor>("X");
const auto* alpha = ctx.Input<Tensor>("Alpha");
auto* out = ctx.Output<Tensor>("Out");
const bool is_test = ctx.Attr<bool>("is_test");

PReluMKLDNNHandler<T> handler(dev_ctx, onednn_engine, ctx.GetPlace(), x,
alpha, ctx.InputName("X"), is_test);

auto src_memory_p = handler.AcquireSrcMemory(x);
auto weights_memory_p =
handler.AcquireWeightsMemoryWithReorder(alpha, is_test);
auto dst_memory_p = handler.AcquireDstMemory(out);
auto prelu_p = handler.AcquireForwardPrimitive();

auto& astream = MKLDNNDeviceContext::tls().get_stream();
prelu_p->execute(astream, {{DNNL_ARG_SRC, *src_memory_p},
{DNNL_ARG_WEIGHTS, *weights_memory_p},
{DNNL_ARG_DST, *dst_memory_p}});
astream.wait();

out->set_layout(framework::DataLayout::kMKLDNN);
out->set_format(GetMKLDNNFormat(*dst_memory_p));
}
};

template <typename T>
class PReluGradMKLDNNKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& ctx) const override {
this->RunKernel(ctx);
}

void RunKernel(const framework::ExecutionContext& ctx) const {
const auto& dev_ctx = ctx.template device_context<MKLDNNDeviceContext>();
const auto& onednn_engine = dev_ctx.GetEngine();

auto* x = ctx.Input<Tensor>("X");
auto* dx = ctx.Output<Tensor>(framework::GradVarName("X"));
auto* dout = ctx.Input<Tensor>(framework::GradVarName("Out"));
auto* dalpha = ctx.Output<Tensor>(framework::GradVarName("Alpha"));
auto* alpha = ctx.Input<Tensor>("Alpha");
const bool is_test = ctx.Attr<bool>("is_test");

PReluMKLDNNHandler<T> handler(dev_ctx, onednn_engine, ctx.GetPlace(), x,
alpha, framework::GradVarName("X"));

auto src_memory_p = handler.AcquireSrcMemory(x);
auto weights_memory_p =
handler.AcquireWeightsMemoryWithReorder(alpha, is_test);
auto diff_src_memory_p = handler.AcquireDiffSrcMemory(dx);
auto diff_weights_memory_p = handler.AcquireDiffWeightsMemory(dalpha);
auto diff_dst_memory_p = handler.AcquireDiffDstMemory(dout);
auto prelu_p = handler.AcquireBackwardPrimitive();

auto& astream = MKLDNNDeviceContext::tls().get_stream();
prelu_p->execute(astream,
{{DNNL_ARG_SRC, *src_memory_p},
{DNNL_ARG_WEIGHTS, *weights_memory_p},
{DNNL_ARG_DIFF_DST, *diff_dst_memory_p},
{DNNL_ARG_DIFF_SRC, *diff_src_memory_p},
{DNNL_ARG_DIFF_WEIGHTS, *diff_weights_memory_p}});
astream.wait();

dx->set_layout(framework::DataLayout::kMKLDNN);
dx->set_format(GetMKLDNNFormat(*diff_src_memory_p));
}
};
} // namespace operators
} // namespace paddle

namespace ops = paddle::operators;
REGISTER_OP_KERNEL(prelu, MKLDNN, paddle::platform::CPUPlace,
ops::PReluMKLDNNKernel<float>,
ops::PReluMKLDNNKernel<paddle::platform::bfloat16>);

REGISTER_OP_KERNEL(prelu_grad, MKLDNN, paddle::platform::CPUPlace,
ops::PReluGradMKLDNNKernel<float>,
ops::PReluGradMKLDNNKernel<paddle::platform::bfloat16>);
40 changes: 34 additions & 6 deletions paddle/fluid/operators/prelu_op.cc
Original file line number Diff line number Diff line change
Expand Up @@ -95,9 +95,17 @@ class PReluOp : public framework::OperatorWithKernel {
protected:
framework::OpKernelType GetExpectedKernelType(
const framework::ExecutionContext &ctx) const override {
return framework::OpKernelType(
OperatorWithKernel::IndicateVarDataType(ctx, "X"),
ctx.device_context());
auto input_data_type =
framework::OperatorWithKernel::IndicateVarDataType(ctx, "X");

#ifdef PADDLE_WITH_MKLDNN
if (this->CanMKLDNNBeUsed(ctx, input_data_type)) {
return framework::OpKernelType(input_data_type, ctx.GetPlace(),
framework::DataLayout::kMKLDNN,
framework::LibraryType::kMKLDNN);
}
#endif
return framework::OpKernelType(input_data_type, ctx.GetPlace());
}
};

Expand Down Expand Up @@ -126,6 +134,18 @@ There are modes:
)DOC");
AddAttr<std::string>("mode", "The mode for inputs to share weights.")
.SetDefault("all");
AddAttr<bool>("use_mkldnn",
"(bool, default false) Only used in mkldnn kernel")
.SetDefault(false);
AddAttr<std::string>(
"mkldnn_data_type",
"(string, default \"float32\"). Data type of mkldnn kernel")
.SetDefault("float32")
.InEnum({"float32", "bfloat16"});
AddAttr<bool>("is_test",
"(bool, default false) Set to true for inference only, false "
"for training. Some layers may run faster when this is true.")
.SetDefault(false);
}
};

Expand Down Expand Up @@ -153,9 +173,17 @@ class PReluGradOp : public framework::OperatorWithKernel {
protected:
framework::OpKernelType GetExpectedKernelType(
const framework::ExecutionContext &ctx) const override {
return framework::OpKernelType(
OperatorWithKernel::IndicateVarDataType(ctx, "X"),
ctx.device_context());
auto input_data_type =
framework::OperatorWithKernel::IndicateVarDataType(ctx, "X");

#ifdef PADDLE_WITH_MKLDNN
if (this->CanMKLDNNBeUsed(ctx, input_data_type)) {
return framework::OpKernelType(input_data_type, ctx.GetPlace(),
framework::DataLayout::kMKLDNN,
framework::LibraryType::kMKLDNN);
}
#endif
return framework::OpKernelType(input_data_type, ctx.GetPlace());
}
};

Expand Down
Loading