Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[NPU] NpuOpRunner supports host tensor as input #33992

Merged
merged 2 commits into from
Jul 7, 2021
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
14 changes: 7 additions & 7 deletions paddle/fluid/operators/lookup_table_v2_op_npu.cc
Original file line number Diff line number Diff line change
Expand Up @@ -39,14 +39,14 @@ class LookupTableV2NPUKernel : public framework::OpKernel<T> {
table_var->IsType<framework::LoDTensor>(), true,
platform::errors::InvalidArgument("npu only accept LoDTensor"));
output_t->mutable_data<T>(ctx.GetPlace());
framework::NPUAttributeMap attr_input = {{"validate_indices", false}};

const auto &runner =
NpuOpRunner("Gather", {*table_t, *ids_t}, {*output_t}, attr_input);
auto stream =
ctx.template device_context<paddle::platform::NPUDeviceContext>()
.stream();
runner.Run(stream);
NpuOpRunner runner;
runner.SetType("GatherV2")
.AddInput(*table_t)
.AddInput(*ids_t)
.AddInput(std::vector<int32_t>{0})
.AddOutput(*output_t);
runner.Run();
}
};

Expand Down
64 changes: 58 additions & 6 deletions paddle/fluid/operators/npu_op_runner.cc
Original file line number Diff line number Diff line change
Expand Up @@ -74,15 +74,15 @@ aclrtStream GetCurrentNPUStream(int device_id) {
return dev_ctx->stream();
}

NpuOpRunner::NpuOpRunner(std::string op_type) : op_type_(op_type) {
attr_ = aclopCreateAttr();
}
NpuOpRunner::NpuOpRunner() {}

NpuOpRunner::NpuOpRunner(const std::string &op_type) : op_type_(op_type) {}

NpuOpRunner::NpuOpRunner(std::string op_type, const std::vector<Tensor> &inputs,
NpuOpRunner::NpuOpRunner(const std::string &op_type,
const std::vector<Tensor> &inputs,
const std::vector<Tensor> &outputs,
const NPUAttributeMap &attrs)
: op_type_(op_type) {
attr_ = aclopCreateAttr();
AddInputs(inputs);
AddOutputs(outputs);
AddAttrs(attrs);
Expand All @@ -108,8 +108,16 @@ NpuOpRunner::~NpuOpRunner() {

const std::string &NpuOpRunner::Type() { return op_type_; }

NpuOpRunner &NpuOpRunner::SetType(const std::string &name) {
op_type_ = name;
return *this;
}

NpuOpRunner &NpuOpRunner::AddAttr(const std::string &name,
const NPUAttribute &attr) {
if (!attr_) {
attr_ = aclopCreateAttr();
}
if (attr.type() == typeid(bool)) {
PADDLE_ENFORCE_NPU_SUCCESS(
aclopSetAttrBool(attr_, name.c_str(), BOOST_GET_CONST(bool, attr)));
Expand Down Expand Up @@ -191,6 +199,46 @@ NpuOpRunner &NpuOpRunner::AddInput(const Tensor &tensor) {
return *this;
}

NpuOpRunner &NpuOpRunner::AddInput(const Tensor &tensor, aclMemType mem_type) {
// create aclTensorDesc
input_descs_.emplace_back(CreateTensorDesc(tensor, mem_type));
// create aclDataBuffer
input_buffers_.emplace_back(CreateDataBuffer(tensor));
return *this;
}

NpuOpRunner &NpuOpRunner::AddInput(std::vector<int32_t> &&dims) {
platform::DeviceContextPool &pool = platform::DeviceContextPool::Instance();
auto *dev_ctx =
static_cast<platform::CPUDeviceContext *>(pool.Get(platform::CPUPlace()));
Tensor host_tensor;
TensorFromVector(dims, *dev_ctx, &host_tensor);
host_tensors_.emplace_back(host_tensor);

// create aclTensorDesc
input_descs_.emplace_back(CreateTensorDesc(host_tensor, ACL_MEMTYPE_HOST));
// create aclDataBuffer
input_buffers_.emplace_back(CreateDataBuffer(host_tensor));

return *this;
}

NpuOpRunner &NpuOpRunner::AddInput(std::vector<int64_t> &&dims) {
platform::DeviceContextPool &pool = platform::DeviceContextPool::Instance();
auto *dev_ctx =
static_cast<platform::CPUDeviceContext *>(pool.Get(platform::CPUPlace()));
Tensor host_tensor;
TensorFromVector(dims, *dev_ctx, &host_tensor);
host_tensors_.emplace_back(host_tensor);

// create aclTensorDesc
input_descs_.emplace_back(CreateTensorDesc(host_tensor, ACL_MEMTYPE_HOST));
// create aclDataBuffer
input_buffers_.emplace_back(CreateDataBuffer(host_tensor));

return *this;
}

NpuOpRunner &NpuOpRunner::AddOutput(const Tensor &tensor) {
// create aclTensorDesc
output_descs_.emplace_back(CreateTensorDesc(tensor));
Expand Down Expand Up @@ -272,7 +320,8 @@ std::vector<aclDataBuffer *> &NpuOpRunner::GetOutputBuffers() {
return output_buffers_;
}

aclTensorDesc *NpuOpRunner::CreateTensorDesc(Tensor tensor) {
aclTensorDesc *NpuOpRunner::CreateTensorDesc(Tensor tensor,
aclMemType mem_type) {
auto dtype = ConvertToNpuDtype(tensor.type());
auto format = ConvertToNpuFormat(tensor.layout());
auto dims = framework::vectorize(tensor.dims());
Expand All @@ -287,6 +336,9 @@ aclTensorDesc *NpuOpRunner::CreateTensorDesc(Tensor tensor) {
PADDLE_ENFORCE_NPU_SUCCESS(aclSetTensorStorageFormat(desc, format));
PADDLE_ENFORCE_NPU_SUCCESS(
aclSetTensorStorageShape(desc, dims.size(), dims.data()));
if (mem_type == ACL_MEMTYPE_HOST) {
PADDLE_ENFORCE_NPU_SUCCESS(aclSetTensorPlaceMent(desc, mem_type));
}
return desc;
}

Expand Down
26 changes: 20 additions & 6 deletions paddle/fluid/operators/npu_op_runner.h
Original file line number Diff line number Diff line change
Expand Up @@ -35,11 +35,12 @@ using DeviceContextPool = platform::DeviceContextPool;

class NpuOpRunner {
public:
explicit NpuOpRunner(std::string op_type);
explicit NpuOpRunner(std::string op_type,
const std::vector<Tensor> &inputs = {},
const std::vector<Tensor> &outputs = {},
const NPUAttributeMap &attrs = {});
NpuOpRunner();
explicit NpuOpRunner(const std::string &op_type);
NpuOpRunner(const std::string &op_type,
const std::vector<Tensor> &inputs = {},
const std::vector<Tensor> &outputs = {},
const NPUAttributeMap &attrs = {});

// NOTE(zhiqiu): why forbid copy and operator= ?
// Since we will free the tensor_descs and data_buffers in the ~NpuOpRunner,
Expand All @@ -53,12 +54,23 @@ class NpuOpRunner {

const std::string &Type();

NpuOpRunner &SetType(const std::string &name);

NpuOpRunner &AddAttr(const std::string &name, const NPUAttribute &attr);

NpuOpRunner &AddAttrs(const NPUAttributeMap &attrs);

NpuOpRunner &AddInput(const Tensor &tensor);

// NOTE(zhiqiu): CANN-5.0.2 support input tensors on host.
// Specifically, the tensor of shape, tensor of dims, etc, which are are small
// vector/list.
NpuOpRunner &AddInput(const Tensor &tensor, aclMemType mem_type);

NpuOpRunner &AddInput(std::vector<int32_t> &&dims);

NpuOpRunner &AddInput(std::vector<int64_t> &&dims);

NpuOpRunner &AddOutput(const Tensor &tensor);

NpuOpRunner &AddInputs(const std::vector<Tensor> &tensors);
Expand All @@ -82,7 +94,8 @@ class NpuOpRunner {
void Run(aclrtStream stream = nullptr) const;

private:
aclTensorDesc *CreateTensorDesc(Tensor tensor);
aclTensorDesc *CreateTensorDesc(Tensor tensor,
aclMemType mem_type = ACL_MEMTYPE_DEVICE);
aclDataBuffer *CreateDataBuffer(Tensor tensor);

private:
Expand All @@ -91,6 +104,7 @@ class NpuOpRunner {
std::vector<aclDataBuffer *> output_buffers_;
std::vector<aclTensorDesc *> input_descs_;
std::vector<aclTensorDesc *> output_descs_;
std::vector<Tensor> host_tensors_;
aclopAttr *attr_{nullptr};
};

Expand Down