Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[NPU] add dropout npu op #34081

Merged
merged 5 commits into from
Jul 12, 2021
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
199 changes: 199 additions & 0 deletions paddle/fluid/operators/dropout_op_npu.cc
Original file line number Diff line number Diff line change
@@ -0,0 +1,199 @@
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the Licnse. */

#include <memory>
#include <string>

#include "paddle/fluid/framework/ddim.h"
#include "paddle/fluid/framework/tensor_util.h"
#include "paddle/fluid/operators/dropout_op.h"
#include "paddle/fluid/operators/npu_op_runner.h"

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;

template <typename DeviceContext, typename T>
class DropoutNPUKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& ctx) const override {
auto* x = ctx.Input<Tensor>("X");
auto* seed_tensor =
ctx.HasInput("Seed") ? ctx.Input<Tensor>("Seed") : nullptr;
auto* out = ctx.Output<Tensor>("Out");
auto* mask = ctx.Output<Tensor>("Mask");

auto dropout_prob = ctx.Attr<float>("dropout_prob");
auto is_test = ctx.Attr<bool>("is_test");

out->mutable_data<T>(ctx.GetPlace());

auto stream =
ctx.template device_context<paddle::platform::NPUDeviceContext>()
.stream();

if (dropout_prob == 1.) {
const auto& runner_zeros_out = NpuOpRunner("ZerosLike", {*out}, {*out});
runner_zeros_out.Run(stream);
mask->mutable_data<uint8_t>(ctx.GetPlace());
const auto& runner_zeros_mask =
NpuOpRunner("ZerosLike", {*mask}, {*mask});
runner_zeros_mask.Run(stream);
return;
}

// only achive the default `upscale_in_train` method
if (!is_test) {
Tensor tmp_x(x->type());
Tensor tmp_out(out->type());
tmp_x.ShareDataWith(*x);
tmp_out.ShareDataWith(*out);
if (x->dims().size() == 1) {
// DropOutDoMask will get error result when input
// is 1-D. Make it become 2-D.
std::vector<int> vec_dim = framework::vectorize<int>(x->dims());
tmp_x.Resize(framework::make_ddim({vec_dim[0], 1}));
tmp_out.Resize(framework::make_ddim({vec_dim[0], 1}));
}

int seed = 0;
int seed2 = 0;
float keep_prob = 1. - dropout_prob;
if (seed_tensor) {
std::vector<int> seed_data;
TensorToVector(*seed_tensor, ctx.device_context(), &seed_data);
seed = seed_data[0];
} else {
seed = ctx.Attr<bool>("fix_seed") ? ctx.Attr<int>("seed") : 0;
}

Tensor keep_prob_tensor(x->type());
keep_prob_tensor.mutable_data<T>({1}, ctx.GetPlace());
FillNpuTensorWithConstant<T>(&keep_prob_tensor,
static_cast<T>(keep_prob));

mask->mutable_data<uint8_t>(ctx.GetPlace());

// mask used in `DropOutGenMask` NPU OP is different from
// the output `Mask`.
Tensor npu_mask(framework::proto::VarType::UINT8);
uint32_t length = (x->numel() + 128 - 1) / 128 * 128;
npu_mask.Resize(framework::make_ddim({length / 8}));
npu_mask.mutable_data<uint8_t>(ctx.GetPlace());

// TODO(pangyoki): `keep_prob` used in `DropOutGenMask` NPU
// OP must be a scalar with shape[0]. At present, the shape
// of the `prob` Tensor of this OP is forced to be set to 0
// in `npu_op_runner.cc`, which needs to be optimized later.
NpuOpRunner runner_gen_mask;
runner_gen_mask.SetType("DropOutGenMask")
.AddInput(framework::vectorize(tmp_out.dims()))
.AddInput(keep_prob_tensor)
.AddOutput(npu_mask)
.AddAttr("seed", seed)
.AddAttr("seed2", seed2);
runner_gen_mask.Run(stream);

NpuOpRunner runner_dropout;
runner_dropout.SetType("DropOutDoMask")
.AddInput(tmp_x)
.AddInput(npu_mask)
.AddInput(keep_prob_tensor)
.AddOutput(tmp_out);
runner_dropout.Run(stream);

// cast `out` from float/float16 to bool
Tensor cast_mask(framework::proto::VarType::BOOL);
cast_mask.Resize(mask->dims());
cast_mask.mutable_data<bool>(ctx.GetPlace());
auto dst_dtype_bool = ConvertToNpuDtype(cast_mask.type());
const auto& runner_cast_mask_bool =
NpuOpRunner("Cast", {*out}, {cast_mask},
{{"dst_type", static_cast<int>(dst_dtype_bool)}});
runner_cast_mask_bool.Run(stream);

// cast cast_mask from bool to uint8
auto dst_dtype_uint8 = ConvertToNpuDtype(mask->type());
const auto& runner_cast_mask_uint8 =
NpuOpRunner("Cast", {cast_mask}, {*mask},
{{"dst_type", static_cast<int>(dst_dtype_uint8)}});
runner_cast_mask_uint8.Run(stream);
} else {
framework::TensorCopy(
*x, ctx.GetPlace(),
ctx.template device_context<platform::DeviceContext>(), out);
}
}
};

template <typename DeviceContext, typename T>
class DropoutGradNPUKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& ctx) const override {
auto* dx = ctx.Output<Tensor>(framework::GradVarName("X"));
auto* dout = ctx.Input<Tensor>(framework::GradVarName("Out"));
auto* mask = ctx.Input<Tensor>("Mask");

auto dropout_prob = ctx.Attr<float>("dropout_prob");
auto is_test = ctx.Attr<bool>("is_test");

PADDLE_ENFORCE_EQ(is_test, false,
platform::errors::PreconditionNotMet(
"GradOp is only callable when is_test is false"));

dx->mutable_data<T>(ctx.GetPlace());

auto stream =
ctx.template device_context<paddle::platform::NPUDeviceContext>()
.stream();

if (dropout_prob == 1.) {
const auto& runner_zeros = NpuOpRunner("ZerosLike", {*dx}, {*dx});
runner_zeros.Run(stream);
return;
}

// cast mask from uint8 to float32/float16
Tensor cast_mask(dx->type());
cast_mask.Resize(mask->dims());
cast_mask.mutable_data<T>(ctx.GetPlace());
auto dst_dtype = ConvertToNpuDtype(dx->type());
const auto& runner_cast_mask =
NpuOpRunner("Cast", {*mask}, {cast_mask},
{{"dst_type", static_cast<int>(dst_dtype)}});
runner_cast_mask.Run(stream);

const auto& runner =
NpuOpRunner("MaskedScale", {*dout, cast_mask}, {*dx},
{{"value", static_cast<float>(1. / (1 - dropout_prob))}});
runner.Run(stream);
}
};

} // namespace operators
} // namespace paddle

namespace ops = paddle::operators;

REGISTER_OP_NPU_KERNEL(
dropout, ops::DropoutNPUKernel<paddle::platform::NPUDeviceContext, float>,
ops::DropoutNPUKernel<paddle::platform::NPUDeviceContext,
paddle::platform::float16>);

REGISTER_OP_NPU_KERNEL(
dropout_grad,
ops::DropoutGradNPUKernel<paddle::platform::NPUDeviceContext, float>,
ops::DropoutGradNPUKernel<paddle::platform::NPUDeviceContext,
paddle::platform::float16>);
14 changes: 11 additions & 3 deletions paddle/fluid/operators/npu_op_runner.cc
Original file line number Diff line number Diff line change
Expand Up @@ -32,6 +32,7 @@ namespace operators {
static std::map<framework::proto::VarType::Type, aclDataType>
DTYPE_2_ACL_DTYPE = {
{framework::proto::VarType::BOOL, ACL_BOOL},
{framework::proto::VarType::UINT8, ACL_UINT8},
{framework::proto::VarType::INT16, ACL_INT16},
{framework::proto::VarType::INT32, ACL_INT32},
{framework::proto::VarType::INT64, ACL_INT64},
Expand Down Expand Up @@ -325,17 +326,24 @@ aclTensorDesc *NpuOpRunner::CreateTensorDesc(Tensor tensor,
auto dtype = ConvertToNpuDtype(tensor.type());
auto format = ConvertToNpuFormat(tensor.layout());
auto dims = framework::vectorize(tensor.dims());
int size = dims.size();
// TODO(pangyoki): `keep_prob` used in `DropOutGenMask` NPU
// OP must be a scalar with shape[0]. At present, the shape
// of the `prob` Tensor of this OP is forced to be set to 0
// in `npu_op_runner.cc`, which needs to be optimized later.
if (op_type_ == "DropOutGenMask" && size == 1 && *(dims.data()) == 1) {
size = 0;
}

VLOG(4) << "NPU dtype:" << dtype << " "
<< "rank:" << dims.size() << " dims:" << tensor.dims()
<< " format:" << format;

auto *desc = aclCreateTensorDesc(dtype, dims.size(), dims.data(), format);
auto *desc = aclCreateTensorDesc(dtype, size, dims.data(), format);
PADDLE_ENFORCE_NOT_NULL(
desc, platform::errors::External("Call aclCreateTensorDesc failed."));
PADDLE_ENFORCE_NPU_SUCCESS(aclSetTensorStorageFormat(desc, format));
PADDLE_ENFORCE_NPU_SUCCESS(
aclSetTensorStorageShape(desc, dims.size(), dims.data()));
PADDLE_ENFORCE_NPU_SUCCESS(aclSetTensorStorageShape(desc, size, dims.data()));
if (mem_type == ACL_MEMTYPE_HOST) {
PADDLE_ENFORCE_NPU_SUCCESS(aclSetTensorPlaceMent(desc, mem_type));
}
Expand Down
Loading