Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Added reshape, reshape2, squeeze and squeeze2 BF16/FP32 FWD/BWD kernels #34219

Merged
merged 26 commits into from
Jul 30, 2021
Merged
Show file tree
Hide file tree
Changes from 6 commits
Commits
Show all changes
26 commits
Select commit Hold shift + click to select a range
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
29 changes: 9 additions & 20 deletions paddle/fluid/framework/ir/graph_pattern_detector.cc
Original file line number Diff line number Diff line change
Expand Up @@ -2262,26 +2262,15 @@ PDNode *patterns::QuantizePlacement::operator()(
PDNode *patterns::Bfloat16Placement::operator()(
const std::unordered_set<std::string> &bfloat16_enabled_op_types) {
std::unordered_set<std::string> supported_op_types =
std::unordered_set<std::string>({"concat",
"conv2d",
"conv2d_transpose",
"elementwise_add",
"elementwise_mul",
"fc",
"fusion_gru",
"fusion_lstm",
"gelu",
"layer_norm",
"matmul",
"matmul_v2",
"pool2d",
"prelu",
"relu",
"reshape2",
"softmax",
"split",
"sum",
"transpose2"});
std::unordered_set<std::string>(
{"concat", "conv2d", "conv2d_transpose",
"elementwise_add", "elementwise_mul", "fc",
"fusion_gru", "fusion_lstm", "gelu",
"layer_norm", "matmul", "matmul_v2",
"pool2d", "prelu", "relu",
"reshape2", "softmax", "split",
"squeeze", "squeeze2", "sum",
"transpose2"});
if (!bfloat16_enabled_op_types.empty()) {
supported_op_types = bfloat16_enabled_op_types;
}
Expand Down
184 changes: 184 additions & 0 deletions paddle/fluid/operators/mkldnn/squeeze_mkldnn_op.cc
Original file line number Diff line number Diff line change
@@ -0,0 +1,184 @@
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/operators/squeeze_op.h"
#include "paddle/fluid/platform/mkldnn_reuse.h"

namespace paddle {
namespace operators {

framework::DDim GetOutputShape(const std::vector<int> squeeze_dims,
const framework::DDim& in_dims, bool is_runtime);
jakpiase marked this conversation as resolved.
Show resolved Hide resolved

using paddle::framework::LoDTensor;
using paddle::framework::Tensor;
using platform::to_void_cast;

template <typename T>
class SqueezeMKLDNNKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& ctx) const override {
RunKernel(ctx);
}

void RunKernel(const framework::ExecutionContext& ctx) const {
const auto& dev_ctx =
ctx.template device_context<platform::MKLDNNDeviceContext>();
const auto& onednn_engine = dev_ctx.GetEngine();

auto* x = ctx.Input<LoDTensor>("X");
auto* out = ctx.Output<LoDTensor>("Out");

auto& axes = ctx.Attr<std::vector<int>>("axes");
auto x_dims = x->dims();
auto x_vec_dims = framework::vectorize(x_dims);
auto out_dims = GetOutputShape(axes, x_dims, true);

mkldnn::memory::data_type x_type = framework::ToMKLDNNDataType(x->type());
std::string key = platform::CreateKey(dev_ctx, x_vec_dims, x->format(),
x->format(), x_type);
jakpiase marked this conversation as resolved.
Show resolved Hide resolved
platform::ReorderMKLDNNHandler reorder_handler(
x_vec_dims, x->type(), x_type, dev_ctx, onednn_engine, key);

auto reorder_src_memory_p = reorder_handler.AcquireSrcMemory(
x->format(), platform::to_void_cast(x->data<T>()));
auto reorder_dst_memory_p =
reorder_handler.AcquireDstMemory(out, x->format(), ctx.GetPlace());
auto reorder_p = reorder_handler.AcquireReorder(reorder_src_memory_p,
reorder_dst_memory_p);

auto& astream = platform::MKLDNNDeviceContext::tls().get_stream();
reorder_p->execute(astream, *reorder_src_memory_p, *reorder_dst_memory_p);

astream.wait();

out->Resize(out_dims);
out->set_layout(framework::DataLayout::kMKLDNN);
out->set_format(getSqueezedFormatTagFromStrides(
reorder_src_memory_p->get_desc(), out_dims));
}

private:
mkldnn::memory::format_tag getSqueezedFormatTagFromStrides(
const mkldnn::memory::desc& md, const framework::DDim& out_dims) const {
const int64_t* in_strides = md.data.format_desc.blocking.strides;
const int64_t* in_dims = md.data.dims;
const int64_t ndims = md.data.ndims;

std::vector<int64_t> out_strides(out_dims.size(), 1);

int j = out_dims.size() - 1;
for (int i = ndims - 1; i >= 0 || j >= 0; --i)
if (out_dims[j] == in_dims[i]) out_strides[j--] = in_strides[i];

mkldnn::memory::desc out_md(framework::vectorize(out_dims),
platform::MKLDNNGetDataType<T>(), out_strides);
return platform::GetMKLDNNFormat(out_md);
}
};

template <typename T>
class SqueezeGradMKLDNNKernel : public SqueezeMKLDNNKernel<T> {
public:
void Compute(const framework::ExecutionContext& ctx) const override {
RunKernel(ctx);
}

void RunKernel(const framework::ExecutionContext& ctx) const {
const auto& dev_ctx =
ctx.template device_context<platform::MKLDNNDeviceContext>();
const auto& onednn_engine = dev_ctx.GetEngine();

auto* dout = ctx.Input<LoDTensor>(framework::GradVarName("Out"));
auto* dx = ctx.Output<LoDTensor>(framework::GradVarName("X"));

framework::DDim x_dims;
if (ctx.Type() == "squeeze_grad") {
x_dims = ctx.Input<LoDTensor>("X")->dims();
} else {
auto xshape_dims = ctx.Input<framework::LoDTensor>("XShape")->dims();
x_dims = framework::slice_ddim(xshape_dims, 1, xshape_dims.size());
}
auto dout_vec_dims = framework::vectorize(dout->dims());

mkldnn::memory::data_type dout_type =
framework::ToMKLDNNDataType(dout->type());
std::string key = platform::CreateKey(
dev_ctx, dout_vec_dims, dout->format(), dout->format(), dout_type);
platform::ReorderMKLDNNHandler reorder_handler(
dout_vec_dims, dout->type(), dout_type, dev_ctx, onednn_engine, key);

auto reorder_src_memory_p = reorder_handler.AcquireSrcMemory(
dout->format(), platform::to_void_cast(dout->data<T>()));
auto reorder_dst_memory_p =
reorder_handler.AcquireDstMemory(dx, dout->format(), ctx.GetPlace());
auto reorder_p = reorder_handler.AcquireReorder(reorder_src_memory_p,
reorder_dst_memory_p);

auto& astream = platform::MKLDNNDeviceContext::tls().get_stream();
reorder_p->execute(astream, *reorder_src_memory_p, *reorder_dst_memory_p);
astream.wait();

dx->Resize(x_dims);
dx->set_layout(framework::DataLayout::kMKLDNN);
dx->set_format(getExtendedFormatTagFromStrides(
reorder_src_memory_p->get_desc(), x_dims));
}

private:
mkldnn::memory::format_tag getExtendedFormatTagFromStrides(
const mkldnn::memory::desc& md, const framework::DDim& out_dims) const {
const int64_t* in_strides = md.data.format_desc.blocking.strides;
const int64_t* in_dims = md.data.dims;
const int64_t ndims = md.data.ndims;

std::vector<int64_t> out_strides(out_dims.size(), 1);

int j = ndims - 1;
for (int i = out_dims.size() - 1; i >= 0; --i) {
if (j >= 0) {
if (out_dims[i] == in_dims[j])
out_strides[i] = in_strides[j--];
else
out_strides[i] =
(i != ndims - 1) ? out_dims[i + 1] * out_strides[i + 1] : 1;
} else {
out_strides[i] = out_dims[i + 1] * out_strides[i + 1];
}
}

mkldnn::memory::desc out_md(framework::vectorize(out_dims),
platform::MKLDNNGetDataType<T>(), out_strides);
return platform::GetMKLDNNFormat(out_md);
}
};
} // namespace operators
} // namespace paddle

namespace ops = paddle::operators;
REGISTER_OP_KERNEL(squeeze, MKLDNN, paddle::platform::CPUPlace,
ops::SqueezeMKLDNNKernel<float>,
ops::SqueezeMKLDNNKernel<paddle::platform::bfloat16>);

REGISTER_OP_KERNEL(squeeze_grad, MKLDNN, paddle::platform::CPUPlace,
ops::SqueezeGradMKLDNNKernel<float>,
ops::SqueezeGradMKLDNNKernel<paddle::platform::bfloat16>);

REGISTER_OP_KERNEL(squeeze2, MKLDNN, paddle::platform::CPUPlace,
ops::SqueezeMKLDNNKernel<float>,
ops::SqueezeMKLDNNKernel<paddle::platform::bfloat16>);
jakpiase marked this conversation as resolved.
Show resolved Hide resolved

REGISTER_OP_KERNEL(squeeze2_grad, MKLDNN, paddle::platform::CPUPlace,
ops::SqueezeGradMKLDNNKernel<float>,
ops::SqueezeGradMKLDNNKernel<paddle::platform::bfloat16>);
65 changes: 56 additions & 9 deletions paddle/fluid/operators/squeeze_op.cc
100755 → 100644
Original file line number Diff line number Diff line change
Expand Up @@ -110,9 +110,17 @@ class SqueezeOp : public framework::OperatorWithKernel {
protected:
framework::OpKernelType GetExpectedKernelType(
const framework::ExecutionContext &ctx) const override {
return framework::OpKernelType(
OperatorWithKernel::IndicateVarDataType(ctx, "X"),
ctx.device_context());
auto input_data_type =
framework::OperatorWithKernel::IndicateVarDataType(ctx, "X");

#ifdef PADDLE_WITH_MKLDNN
if (this->CanMKLDNNBeUsed(ctx, input_data_type)) {
return framework::OpKernelType(input_data_type, ctx.GetPlace(),
framework::DataLayout::kMKLDNN,
framework::LibraryType::kMKLDNN);
}
#endif
return framework::OpKernelType(input_data_type, ctx.GetPlace());
}
};

Expand All @@ -129,9 +137,17 @@ class SqueezeGradOp : public framework::OperatorWithKernel {
protected:
framework::OpKernelType GetExpectedKernelType(
const framework::ExecutionContext &ctx) const override {
return framework::OpKernelType(OperatorWithKernel::IndicateVarDataType(
ctx, framework::GradVarName("Out")),
ctx.device_context());
auto input_data_type = framework::OperatorWithKernel::IndicateVarDataType(
ctx, framework::GradVarName("Out"));

#ifdef PADDLE_WITH_MKLDNN
if (this->CanMKLDNNBeUsed(ctx, input_data_type)) {
return framework::OpKernelType(input_data_type, ctx.GetPlace(),
framework::DataLayout::kMKLDNN,
framework::LibraryType::kMKLDNN);
}
#endif
return framework::OpKernelType(input_data_type, ctx.GetPlace());
}
};

Expand All @@ -144,6 +160,14 @@ class SqueezeOpMaker : public framework::OpProtoAndCheckerMaker {
"(std::vector<int>). List of integers,"
" indicating the dimensions to squeeze.")
.SetDefault({});
AddAttr<bool>("use_mkldnn",
"(bool, default false) Only used in mkldnn kernel")
.SetDefault(false);
AddAttr<std::string>(
"mkldnn_data_type",
"(string, default \"float32\"). Data type of mkldnn kernel")
.SetDefault("float32")
.InEnum({"float32", "bfloat16"});
AddComment(R"DOC(
Squeeze Operator.

Expand Down Expand Up @@ -209,6 +233,21 @@ class Squeeze2Op : public framework::OperatorWithKernel {
ctx->SetOutputDim("XShape", framework::make_ddim(xshape_dims));
ctx->ShareLoD("X", /*->*/ "XShape");
}

framework::OpKernelType GetExpectedKernelType(
const framework::ExecutionContext &ctx) const override {
auto input_data_type =
framework::OperatorWithKernel::IndicateVarDataType(ctx, "X");

#ifdef PADDLE_WITH_MKLDNN
if (this->CanMKLDNNBeUsed(ctx, input_data_type)) {
return framework::OpKernelType(input_data_type, ctx.GetPlace(),
framework::DataLayout::kMKLDNN,
framework::LibraryType::kMKLDNN);
}
#endif
return framework::OpKernelType(input_data_type, ctx.GetPlace());
}
};

template <typename T>
Expand Down Expand Up @@ -243,9 +282,17 @@ class Squeeze2GradOp : public framework::OperatorWithKernel {
protected:
framework::OpKernelType GetExpectedKernelType(
const framework::ExecutionContext &ctx) const override {
return framework::OpKernelType(OperatorWithKernel::IndicateVarDataType(
ctx, framework::GradVarName("Out")),
ctx.device_context());
auto input_data_type = framework::OperatorWithKernel::IndicateVarDataType(
ctx, framework::GradVarName("Out"));

#ifdef PADDLE_WITH_MKLDNN
if (this->CanMKLDNNBeUsed(ctx, input_data_type)) {
return framework::OpKernelType(input_data_type, ctx.GetPlace(),
framework::DataLayout::kMKLDNN,
framework::LibraryType::kMKLDNN);
}
#endif
return framework::OpKernelType(input_data_type, ctx.GetPlace());
}
};

Expand Down
Loading