Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

add unique_consecutive_op #34334

Merged
merged 27 commits into from
Aug 16, 2021
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
Show all changes
27 commits
Select commit Hold shift + click to select a range
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
142 changes: 142 additions & 0 deletions paddle/fluid/operators/unique_consecutive_op.cc
Original file line number Diff line number Diff line change
@@ -0,0 +1,142 @@
/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

2019->2021


Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/operators/unique_consecutive_op.h"
#include "paddle/fluid/framework/op_version_registry.h"

namespace paddle {
namespace operators {

class UniqueConsecutiveOp : public framework::OperatorWithKernel {
public:
using framework::OperatorWithKernel::OperatorWithKernel;

void InferShape(framework::InferShapeContext* ctx) const override {
OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X", "unique_consecutive");
OP_INOUT_CHECK(ctx->HasOutput("Out"), "Output", "Out",
"unique_consecutive");

auto in_dims = ctx->GetInputDim("X");
bool return_inverse = ctx->Attrs().Get<bool>("return_inverse");
bool return_counts = ctx->Attrs().Get<bool>("return_counts");
auto axis_vec = ctx->Attrs().Get<std::vector<int>>("axis");
if (return_inverse) {
OP_INOUT_CHECK(ctx->HasOutput("Index"), "Output", "Index",
"unique_consecutive");
}
if (return_counts) {
OP_INOUT_CHECK(ctx->HasOutput("Counts"), "Output", "Counts",
"unique_consecutive");
}

if (axis_vec.empty()) {
ctx->SetOutputDim("Out", {-1});
if (return_inverse) {
ctx->SetOutputDim("Index", {framework::product(in_dims)});
}
} else {
int axis = axis_vec[0];
if (axis < 0) {
axis += in_dims.size();
}
PADDLE_ENFORCE_LT(
axis, in_dims.size(),
platform::errors::InvalidArgument("The axis(%d) should be less than "
"the dimension size(%d) of x.",
axis, in_dims.size()));
auto out_dims = in_dims;
out_dims[axis] = -1;
ctx->SetOutputDim("Out", out_dims);
if (return_inverse) {
ctx->SetOutputDim("Index", {in_dims[axis]});
}
}
if (return_counts) {
ctx->SetOutputDim("Counts", {-1});
}
}

protected:
framework::OpKernelType GetExpectedKernelType(
const framework::ExecutionContext& ctx) const override {
return framework::OpKernelType(
OperatorWithKernel::IndicateVarDataType(ctx, "X"), ctx.GetPlace());
}
};

class UniqueConsecutiveOpMaker : public framework::OpProtoAndCheckerMaker {
public:
void Make() override {
AddInput("X", "The input tensor of unique_consecutive op.");
AddAttr<int>("dtype",
"(int, default 5(FP32)) "
"data type for output index")
.SetDefault(framework::proto::VarType::FP32);

AddOutput("Out", "A unique consecutive subsequence for input tensor.");
AddOutput("Index",
"The indices for where elements in the original input ended up "
"in the returned unique tensor.")
.AsDispensable();
AddOutput("Counts", "The counts for each unique element.").AsDispensable();
AddAttr<bool>(
"return_inverse",
"If True, also return the indices for where elements"
" in the original input ended up in the returned unique tensor.")
.SetDefault(false);
AddAttr<bool>("return_counts",
"If True, also return the counts for each unique element.")
.SetDefault(false);
AddAttr<std::vector<int>>(
"axis",
"The axis to apply unique. If None, the input will be flattened.")
.SetDefault({});
AddComment(R"DOC(
This function is different from paddle.unique() in the sense that this
function only eliminates consecutive duplicate values.
)DOC");
}
};
} // namespace operators
} // namespace paddle

namespace ops = paddle::operators;
REGISTER_OP_WITHOUT_GRADIENT(unique_consecutive, ops::UniqueConsecutiveOp,
ops::UniqueConsecutiveOpMaker);
REGISTER_OP_CPU_KERNEL(
unique_consecutive,
ops::UniqueConsecutiveKernel<paddle::platform::CPUDeviceContext, float>,
ops::UniqueConsecutiveKernel<paddle::platform::CPUDeviceContext, double>,
ops::UniqueConsecutiveKernel<paddle::platform::CPUDeviceContext, int32_t>,
ops::UniqueConsecutiveKernel<paddle::platform::CPUDeviceContext, int64_t>);
REGISTER_OP_VERSION(unique_consecutive)
.AddCheckpoint(
R"ROC(
Upgrade unique_consecutive, add 2 outputs [Indices, Counts] and 3 attribute
[return_inverse, return_counts, axis].
)ROC",
paddle::framework::compatible::OpVersionDesc()
.NewOutput("Counts", "The counts for each unique element.")
.NewAttr("return_inverse",
"If True, also return the indices for where elements"
" in the original input ended up in the returned unique "
"tensor.",
false)
.NewAttr("return_counts",
"If True, also return the counts for each unique element.",
false)
.NewAttr("axis",
"The axis to apply unique. If None, the input will be "
"flattened.",
std::vector<int>{}));
Loading