Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[NPU] add meshgrid, test=develop #34576

Merged
merged 1 commit into from
Aug 12, 2021
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
84 changes: 84 additions & 0 deletions paddle/fluid/operators/meshgrid_op_npu.cc
Original file line number Diff line number Diff line change
@@ -0,0 +1,84 @@
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the Licnse. */

#include "paddle/fluid/operators/meshgrid_op.h"
#include "paddle/fluid/operators/npu_op_runner.h"

namespace paddle {
namespace operators {

template <typename DeviceContext, typename T>
class MeshgridNPUKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& context) const override {
auto ins = context.MultiInput<framework::Tensor>("X");
auto outs = context.MultiOutput<framework::Tensor>("Out");
PADDLE_ENFORCE_EQ(
(ins.size() > 1) && (ins.size() < 7), true,
platform::errors::InvalidArgument(
"Excepted Tensor numbers between 2 and 6, but only received d% .",
ins.size()));

int64_t size = ins.size();
std::vector<int64_t> shape(size);

for (int64_t i = 0; i < size; i++) {
switch (ins[i]->dims().size()) {
case 0:
shape[i] = 1;
break;
case 1:
shape[i] = ins[i]->dims()[0];
break;
default:
PADDLE_THROW(platform::errors::InvalidArgument(
"Expected scalar or 1D tensor in the tensor list but got tensor "
"%d: ",
i));
}
}

for (int64_t i = 0; i < size; i++) {
std::vector<int64_t> view_shape(size, 1);
view_shape[i] = shape[i];

framework::DDim out_dims_reshape = framework::make_ddim(view_shape);
framework::Tensor reshape_ins_tensor(ins[i]->type());
reshape_ins_tensor.ShareDataWith(*ins[i]);
reshape_ins_tensor.Resize(out_dims_reshape);

framework::DDim out_dims = framework::make_ddim(shape);
outs[i]->Resize(out_dims);
outs[i]->mutable_data<T>(context.GetPlace());

auto stream =
context.template device_context<paddle::platform::NPUDeviceContext>()
.stream();
const auto& runner = NpuOpRunner("BroadcastToD", {reshape_ins_tensor},
{*(outs[i])}, {{"shape", shape}});
runner.Run(stream);
}
}
};

} // namespace operators
} // namespace paddle

namespace ops = paddle::operators;
namespace plat = paddle::platform;

REGISTER_OP_NPU_KERNEL(
meshgrid, ops::MeshgridNPUKernel<plat::NPUDeviceContext, float>,
ops::MeshgridNPUKernel<plat::NPUDeviceContext, plat::float16>,
ops::MeshgridNPUKernel<plat::NPUDeviceContext, int32_t>);
216 changes: 216 additions & 0 deletions python/paddle/fluid/tests/unittests/npu/test_meshgrid_op_npu.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,216 @@
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function

import unittest
import numpy as np
import sys
sys.path.append("..")
from op_test import OpTest, skip_check_grad_ci
import paddle.fluid as fluid
import paddle
from paddle.fluid import compiler, Program, program_guard, core

paddle.enable_static()


class TestMeshgridOp(OpTest):
def setUp(self):
self.set_npu()
self.op_type = "meshgrid"
self.dtype = self.get_dtype()
ins, outs = self.init_test_data()
self.inputs = {'X': [('x%d' % i, ins[i]) for i in range(len(ins))]}
self.outputs = {
'Out': [('out%d' % i, outs[i]) for i in range(len(outs))]
}

def set_npu(self):
self.__class__.use_npu = True
self.place = paddle.NPUPlace(0)

def get_dtype(self):
return "float32"

def test_check_output(self):
self.check_output_with_place(self.place)

def test_check_grad(self):
pass

def init_test_data(self):
self.shape = self.get_x_shape()
ins = []
outs = []
for i in range(len(self.shape)):
ins.append(np.random.random((self.shape[i], )).astype(self.dtype))

for i in range(len(self.shape)):
out_reshape = [1] * len(self.shape)
out_reshape[i] = self.shape[i]
out_temp = np.reshape(ins[i], out_reshape)
outs.append(np.broadcast_to(out_temp, self.shape))
return ins, outs

def get_x_shape(self):
return [100, 200]


@skip_check_grad_ci(
reason="The backward test is not supported for float16 type on NPU.")
class TestMeshgridOpFP16(TestMeshgridOp):
def get_dtype(self):
return "float16"


class TestMeshgridOp2(TestMeshgridOp):
def get_x_shape(self):
return [100, 300]


class TestMeshgridOp3(unittest.TestCase):
def test_api(self):
x = fluid.data(shape=[100], dtype='int32', name='x')
y = fluid.data(shape=[200], dtype='int32', name='y')

input_1 = np.random.randint(0, 100, [100, ]).astype('int32')
input_2 = np.random.randint(0, 100, [200, ]).astype('int32')

out_1 = np.reshape(input_1, [100, 1])
out_1 = np.broadcast_to(out_1, [100, 200])
out_2 = np.reshape(input_2, [1, 200])
out_2 = np.broadcast_to(out_2, [100, 200])

exe = fluid.Executor(place=fluid.NPUPlace(0))
grid_x, grid_y = paddle.tensor.meshgrid(x, y)
res_1, res_2 = exe.run(fluid.default_main_program(),
feed={'x': input_1,
'y': input_2},
fetch_list=[grid_x, grid_y])

self.assertTrue(np.allclose(res_1, out_1))
self.assertTrue(np.allclose(res_2, out_2))


class TestMeshgridOp4(unittest.TestCase):
def test_list_input(self):
x = fluid.data(shape=[100], dtype='int32', name='x')
y = fluid.data(shape=[200], dtype='int32', name='y')

input_1 = np.random.randint(0, 100, [100, ]).astype('int32')
input_2 = np.random.randint(0, 100, [200, ]).astype('int32')

out_1 = np.reshape(input_1, [100, 1])
out_1 = np.broadcast_to(out_1, [100, 200])
out_2 = np.reshape(input_2, [1, 200])
out_2 = np.broadcast_to(out_2, [100, 200])

exe = fluid.Executor(place=fluid.NPUPlace(0))
grid_x, grid_y = paddle.tensor.meshgrid([x, y])
res_1, res_2 = exe.run(fluid.default_main_program(),
feed={'x': input_1,
'y': input_2},
fetch_list=[grid_x, grid_y])

self.assertTrue(np.allclose(res_1, out_1))
self.assertTrue(np.allclose(res_2, out_2))


class TestMeshgridOp5(unittest.TestCase):
def test_tuple_input(self):
x = fluid.data(shape=[100], dtype='int32', name='x')
y = fluid.data(shape=[200], dtype='int32', name='y')

input_1 = np.random.randint(0, 100, [100, ]).astype('int32')
input_2 = np.random.randint(0, 100, [200, ]).astype('int32')

out_1 = np.reshape(input_1, [100, 1])
out_1 = np.broadcast_to(out_1, [100, 200])
out_2 = np.reshape(input_2, [1, 200])
out_2 = np.broadcast_to(out_2, [100, 200])

exe = fluid.Executor(place=fluid.NPUPlace(0))
grid_x, grid_y = paddle.tensor.meshgrid((x, y))
res_1, res_2 = exe.run(fluid.default_main_program(),
feed={'x': input_1,
'y': input_2},
fetch_list=[grid_x, grid_y])

self.assertTrue(np.allclose(res_1, out_1))
self.assertTrue(np.allclose(res_2, out_2))


class TestMeshgridOp6(unittest.TestCase):
def test_api_with_dygraph(self):
paddle.disable_static(paddle.NPUPlace(0))
input_3 = np.random.randint(0, 100, [100, ]).astype('int32')
input_4 = np.random.randint(0, 100, [200, ]).astype('int32')

out_3 = np.reshape(input_3, [100, 1])
out_3 = np.broadcast_to(out_3, [100, 200])
out_4 = np.reshape(input_4, [1, 200])
out_4 = np.broadcast_to(out_4, [100, 200])

tensor_3 = paddle.to_tensor(input_3)
tensor_4 = paddle.to_tensor(input_4)
res_3, res_4 = paddle.tensor.meshgrid(tensor_3, tensor_4)

self.assertTrue(np.allclose(res_3.numpy(), out_3))
self.assertTrue(np.allclose(res_4.numpy(), out_4))
paddle.enable_static()


class TestMeshgridOp7(unittest.TestCase):
def test_api_with_dygraph_list_input(self):
paddle.disable_static(paddle.NPUPlace(0))
input_3 = np.random.randint(0, 100, [100, ]).astype('int32')
input_4 = np.random.randint(0, 100, [200, ]).astype('int32')

out_3 = np.reshape(input_3, [100, 1])
out_3 = np.broadcast_to(out_3, [100, 200])
out_4 = np.reshape(input_4, [1, 200])
out_4 = np.broadcast_to(out_4, [100, 200])

tensor_3 = paddle.to_tensor(input_3)
tensor_4 = paddle.to_tensor(input_4)
res_3, res_4 = paddle.meshgrid([tensor_3, tensor_4])

self.assertTrue(np.allclose(res_3.numpy(), out_3))
self.assertTrue(np.allclose(res_4.numpy(), out_4))
paddle.enable_static()


class TestMeshgridOp8(unittest.TestCase):
def test_api_with_dygraph_tuple_input(self):
paddle.disable_static(paddle.NPUPlace(0))
input_3 = np.random.randint(0, 100, [100, ]).astype('int32')
input_4 = np.random.randint(0, 100, [200, ]).astype('int32')

out_3 = np.reshape(input_3, [100, 1])
out_3 = np.broadcast_to(out_3, [100, 200])
out_4 = np.reshape(input_4, [1, 200])
out_4 = np.broadcast_to(out_4, [100, 200])

tensor_3 = paddle.to_tensor(input_3)
tensor_4 = paddle.to_tensor(input_4)
res_3, res_4 = paddle.tensor.meshgrid((tensor_3, tensor_4))

self.assertTrue(np.allclose(res_3.numpy(), out_3))
self.assertTrue(np.allclose(res_4.numpy(), out_4))
paddle.enable_static()


if __name__ == '__main__':
unittest.main()