Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[npu]Add argsort op #34865

Merged
merged 7 commits into from
Aug 20, 2021
Merged
Show file tree
Hide file tree
Changes from 5 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
263 changes: 263 additions & 0 deletions paddle/fluid/operators/argsort_op_npu.cc
Original file line number Diff line number Diff line change
@@ -0,0 +1,263 @@
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/operators/argsort_op.h"
#include "paddle/fluid/operators/npu_op_runner.h"

namespace paddle {
namespace operators {

template <typename DeviceContext, typename T>
class ArgsortNPUKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& ctx) const override {
auto* input = ctx.Input<framework::Tensor>("X");
auto* output = ctx.Output<framework::Tensor>("Out");
output->mutable_data<T>(ctx.GetPlace());
auto* indices = ctx.Output<framework::Tensor>("Indices");
indices->mutable_data<int32_t>(ctx.GetPlace());

int32_t axis = ctx.Attr<int>("axis");
auto in_dims = indices->dims();
axis = (axis < 0) ? (in_dims.size() + axis) : axis;
bool descending = ctx.Attr<bool>("descending");
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

加一行 axis = (axis < 0) ? (in_dims.size() + axis) : axis; 使得axis永远为正数。

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

已经添加啦

auto stream =
ctx.template device_context<paddle::platform::NPUDeviceContext>()
.stream();
framework::NPUAttributeMap sort_attr_input = {
{"axis", static_cast<int32_t>(-1)}, {"descending", descending}};

if (axis == -1 || axis + 1 == in_dims.size()) {
const auto& sort_runner =
NpuOpRunner("Sort", {*input}, {*output, *indices}, sort_attr_input);
sort_runner.Run(stream);
} else {
// transpose
std::vector<int> trans;
for (int i = 0; i < axis; i++) {
trans.push_back(i);
}
trans.push_back(in_dims.size() - 1);
for (int i = axis + 1; i < in_dims.size() - 1; i++) {
trans.push_back(i);
}
trans.push_back(axis);
framework::DDim trans_dims(in_dims);
for (size_t i = 0; i < trans.size(); i++) {
trans_dims[i] = in_dims[trans[i]];
}
framework::NPUAttributeMap trans_attr_input = {{"perm", trans}};
Tensor trans_input;
trans_input.mutable_data<T>(trans_dims, ctx.GetPlace());
const auto& trans_input_runner =
NpuOpRunner("TransposeD", {*input}, {trans_input}, trans_attr_input);
trans_input_runner.Run(stream);
Tensor trans_indices;
trans_indices.mutable_data<int32_t>(trans_dims, ctx.GetPlace());
const auto& trans_indice_runner = NpuOpRunner(
"TransposeD", {*indices}, {trans_indices}, trans_attr_input);
trans_indice_runner.Run(stream);
Tensor trans_output;
trans_output.mutable_data<T>(trans_dims, ctx.GetPlace());
const auto& trans_output_runner = NpuOpRunner(
"TransposeD", {*output}, {trans_output}, trans_attr_input);
trans_output_runner.Run(stream);
const auto& sort_runner =
NpuOpRunner("Sort", {trans_input}, {trans_output, trans_indices},
sort_attr_input);
sort_runner.Run(stream);
// transpose back
const auto& trans_indices_back_runner = NpuOpRunner(
"TransposeD", {trans_indices}, {*indices}, trans_attr_input);
trans_indices_back_runner.Run(stream);
const auto& trans_output_back_runner = NpuOpRunner(
"TransposeD", {trans_output}, {*output}, trans_attr_input);
trans_output_back_runner.Run(stream);
}
}
};

template <typename Type>
static void ReshapeNPU(const framework::ExecutionContext& ctx,
Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

ctx 是冗余的参数

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

已修改

const framework::Tensor* input,
const std::vector<Type>& input_shapes,
framework::Tensor* output) {
output->ShareDataWith(*input);
output->Resize(framework::make_ddim(std::move(input_shapes)));
}

template <typename T, typename Type>
static void FullAssignNPU(const framework::ExecutionContext& ctx,
Type ind_lastdim, Type outer_dim,
const framework::DDim& trans_dims,
const framework::Tensor* input,
const framework::Tensor* indices,
framework::Tensor* t_out) {
// reshape input
Type input_shape = ind_lastdim * outer_dim;
std::vector<Type> input_shapes = {input_shape};
Tensor input_reshape_tensor(input->type());
ReshapeNPU<Type>(ctx, input, input_shapes, &input_reshape_tensor);
// reshape index
std::vector<Type> index_shapes = {outer_dim, ind_lastdim};
framework::DDim ind_2d = framework::make_ddim({outer_dim, ind_lastdim});
Tensor ind_2d_tensor(indices->type());
ReshapeNPU<Type>(ctx, indices, index_shapes, &ind_2d_tensor);
// range_flatten_index
std::vector<int32_t> range_flatten_index;
for (Type i = 0; i < input_shape; i += ind_lastdim) {
range_flatten_index.push_back(static_cast<int32_t>(i));
}
Tensor range_flatten_index_tensor(framework::proto::VarType::INT32);
range_flatten_index_tensor.Resize(framework::make_ddim({outer_dim}));
range_flatten_index_tensor.mutable_data<int32_t>(
{static_cast<int>(range_flatten_index.size())}, ctx.GetPlace());
TensorFromVector(range_flatten_index, ctx.device_context(),
&range_flatten_index_tensor);
Tensor range_flatten_index_expand_tensor(range_flatten_index_tensor.type());
std::vector<Type> flatten_shape = {outer_dim, 1};
ReshapeNPU<Type>(ctx, &range_flatten_index_tensor, flatten_shape,
&range_flatten_index_expand_tensor);
auto stream =
ctx.template device_context<paddle::platform::NPUDeviceContext>()
.stream();
Tensor ind_2d_add_tensor;
ind_2d_add_tensor.mutable_data<int32_t>(ind_2d, ctx.GetPlace());
const auto& runner_ind_2d_tensor = NpuOpRunner(
std::string("Add"), {ind_2d_tensor, range_flatten_index_expand_tensor},
{ind_2d_add_tensor}, {});
runner_ind_2d_tensor.Run(stream);
Tensor ind_reshape_tensor(ind_2d_add_tensor.type());
ReshapeNPU<Type>(ctx, &ind_2d_add_tensor, input_shapes, &ind_reshape_tensor);
Tensor ind_reshape_expand_tensor(ind_reshape_tensor.type());
std::vector<Type> ind_shape = {input_shape, 1};
ReshapeNPU<Type>(ctx, &ind_reshape_tensor, ind_shape,
&ind_reshape_expand_tensor);
// expand_index
Tensor input_scatter_tensor;
input_scatter_tensor.Resize({input_shape});
input_scatter_tensor.mutable_data<T>(ctx.GetPlace());
Tensor input_scatter_tensor_ori;
input_scatter_tensor_ori.Resize({input_shape});
input_scatter_tensor_ori.mutable_data<T>(ctx.GetPlace());
std::vector<Type> trans_shapes;

for (int i = 0; i < trans_dims.size(); i++) {
trans_shapes.push_back(trans_dims[i]);
}
NpuOpRunner runner_scatter;
runner_scatter.SetType("TensorScatterUpdate")
.AddInput(input_scatter_tensor_ori)
.AddInput(ind_reshape_expand_tensor)
.AddInput(input_reshape_tensor)
.AddOutput(input_scatter_tensor);
runner_scatter.Run(stream);
framework::TensorCopy(input_scatter_tensor, ctx.GetPlace(),
ctx.template device_context<platform::DeviceContext>(),
t_out);
t_out->Resize(framework::make_ddim(trans_shapes));
}

template <typename DeviceContext, typename T>
class ArgsortGradNPUKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& ctx) const override {
auto* indices = ctx.Input<Tensor>("Indices");
auto* dX = ctx.Output<Tensor>(framework::GradVarName("X"));
auto* dO = ctx.Input<Tensor>(framework::GradVarName("Out"));
int axis = ctx.Attr<int>("axis");
auto in_dims = indices->dims();
axis = (axis < 0) ? (in_dims.size() + axis) : axis;
auto place = ctx.GetPlace();

auto stream =
ctx.template device_context<paddle::platform::NPUDeviceContext>()
.stream();
dX->mutable_data<T>(ctx.GetPlace());
Tensor dxt;
dxt.mutable_data<T>(dX->dims(), place);
const auto& runner_flatten =
NpuOpRunner(std::string("Flatten"), {*dX}, {dxt}, {});
runner_flatten.Run(stream);
FillNpuTensorWithConstant<T>(&dxt, static_cast<T>(0));
if (dO->numel() == 0) return;
// Do full assig n
if (axis == -1 || axis + 1 == in_dims.size()) {
const int64_t outer_dim = framework::product(
framework::slice_ddim(in_dims, 0, in_dims.size() - 1));
const int64_t ind_lastdim = in_dims[in_dims.size() - 1];
FullAssignNPU<T, int64_t>(ctx, ind_lastdim, outer_dim, in_dims, dO,
indices, dX);

} else {
// If not full assign do transpose
std::vector<int> trans;
for (int i = 0; i < axis; i++) {
trans.push_back(i);
}
trans.push_back(in_dims.size() - 1);
for (int i = axis + 1; i < in_dims.size() - 1; i++) {
trans.push_back(i);
}
trans.push_back(axis);
framework::DDim trans_dims(in_dims);
for (size_t i = 0; i < trans.size(); i++) {
trans_dims[i] = in_dims[trans[i]];
}
std::vector<int> axis;
for (size_t i = 0; i < trans.size(); i++) {
axis.push_back(in_dims[trans[i]]);
}
framework::NPUAttributeMap attr_input = {{"perm", trans}};
Tensor trans_dO;
trans_dO.mutable_data<T>(trans_dims, ctx.GetPlace());
Tensor trans_ind;
trans_ind.mutable_data<int32_t>(trans_dims, ctx.GetPlace());
// Do transpose
const auto& runner_transpose_dx = NpuOpRunner(
std::string("TransposeD"), {*dO}, {trans_dO}, {attr_input});
runner_transpose_dx.Run(stream);
const auto& runner_transpose_ind = NpuOpRunner(
std::string("TransposeD"), {*indices}, {trans_ind}, {attr_input});
runner_transpose_ind.Run(stream);

const int64_t outer_dim = framework::product(
framework::slice_ddim(trans_dims, 0, trans_dims.size() - 1));
const int64_t ind_lastdim = trans_dims[trans_dims.size() - 1];

Tensor tmp_out;
tmp_out.mutable_data<T>(trans_dims, ctx.GetPlace());

FullAssignNPU<T, int64_t>(ctx, ind_lastdim, outer_dim, trans_dims,
&trans_dO, &trans_ind, &tmp_out);

// transpose back
const auto& runner_transpose_out = NpuOpRunner(
std::string("TransposeD"), {tmp_out}, {*dX}, {attr_input});
runner_transpose_out.Run(stream);
}
}
};

} // namespace operators
} // namespace paddle

namespace ops = paddle::operators;
namespace plat = paddle::platform;

REGISTER_OP_NPU_KERNEL(
argsort, ops::ArgsortNPUKernel<plat::NPUDeviceContext, float>,
ops::ArgsortNPUKernel<plat::NPUDeviceContext, plat::float16>);

REGISTER_OP_NPU_KERNEL(argsort_grad,
ops::ArgsortGradNPUKernel<plat::NPUDeviceContext, float>,
ops::ArgsortGradNPUKernel<plat::NPUDeviceContext,
paddle::platform::float16>);
Loading