Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add SVD Op and it's GPU and CPU kernel #34953

Merged
merged 14 commits into from
Sep 2, 2021
Merged
1 change: 1 addition & 0 deletions cmake/operators.cmake
Original file line number Diff line number Diff line change
Expand Up @@ -183,6 +183,7 @@ function(op_library TARGET)
list(REMOVE_ITEM miopen_cu_cc_srcs "affine_grid_cudnn_op.cu.cc")
list(REMOVE_ITEM miopen_cu_cc_srcs "grid_sampler_cudnn_op.cu.cc")
list(REMOVE_ITEM hip_srcs "cholesky_op.cu")
list(REMOVE_ITEM hip_srcs "svd_op.cu")
list(REMOVE_ITEM hip_srcs "multinomial_op.cu")
list(REMOVE_ITEM hip_srcs "decode_jpeg_op.cu")
hip_library(${TARGET} SRCS ${cc_srcs} ${hip_cc_srcs} ${miopen_cu_cc_srcs} ${miopen_cu_srcs} ${mkldnn_cc_srcs} ${hip_srcs} DEPS ${op_library_DEPS}
Expand Down
372 changes: 372 additions & 0 deletions paddle/fluid/operators/svd_helper.h
Original file line number Diff line number Diff line change
@@ -0,0 +1,372 @@
// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#pragma once
#include <Eigen/src/Core/util/Constants.h>
#include <Eigen/Dense>
#include <Eigen/SVD>
#include <iostream>
#include "paddle/fluid/framework/ddim.h"
#include "paddle/fluid/framework/operator.h"
#include "paddle/fluid/framework/tensor.h"
#include "paddle/fluid/operators/math/blas.h"
#include "paddle/fluid/operators/math/functors.h"
#include "paddle/fluid/operators/math/math_function.h"
#include "paddle/fluid/platform/device_context.h"
#include "paddle/fluid/platform/for_range.h"

namespace paddle {
namespace operators {
namespace math {
using Tensor = framework::Tensor;
using InTensors = std::vector<const Tensor*>;
using OutTensors = std::vector<Tensor*>;
using OpName = std::string;

template <typename T>
void EigenSvd(const T* X, T* U, T* VH, T* S, int rows, int cols,
int full = false) {
auto flag = Eigen::DecompositionOptions::ComputeThinU |
Eigen::DecompositionOptions::ComputeThinV;
if (full) {
flag = Eigen::DecompositionOptions::ComputeFullU |
Eigen::DecompositionOptions::ComputeFullV;
}
Eigen::BDCSVD<
Eigen::Matrix<T, Eigen::Dynamic, Eigen::Dynamic, Eigen::RowMajor>>
svd(2, 2, flag);
/*NOTE(xiongkun03) Eigen::Matrix API need non-const pointer.*/
T* input = const_cast<T*>(X);
Aurelius84 marked this conversation as resolved.
Show resolved Hide resolved
auto m = Eigen::Map<
Eigen::Matrix<T, Eigen::Dynamic, Eigen::Dynamic, Eigen::RowMajor>>(
input, rows, cols);
svd.compute(m);
Eigen::Matrix<T, Eigen::Dynamic, Eigen::Dynamic, Eigen::RowMajor> V_trans =
svd.matrixV().transpose();
memcpy(U, svd.matrixU().data(), svd.matrixU().size() * sizeof(T));
memcpy(VH, V_trans.data(), V_trans.size() * sizeof(T));
memcpy(S, svd.singularValues().data(),
svd.singularValues().size() * sizeof(T));
}

template <typename T>
void BatchSvd(const T* X, T* U, T* VH, T* S, int rows, int cols, int batches,
int full = false) {
int stride = rows * cols;
int k = std::min(rows, cols);
int stride_u = full ? rows * rows : k * rows;
int stride_v = full ? cols * cols : k * cols;
for (int i = 0; i < batches; ++i) {
EigenSvd<T>(X + i * stride, U + i * stride_u, VH + i * stride_v, S + i * k,
rows, cols, full);
}
return;
}

template <typename T>
struct PowFunctor {
PowFunctor(const T* input, T* output, int64_t numel, float exp)
: input_(input), output_(output), numel_(numel), exp_(exp) {}

HOSTDEVICE void operator()(int64_t idx) const {
output_[idx] = pow(input_[idx], exp_);
}
const T* input_;
T* output_;
int64_t numel_;
float exp_;
};

static std::vector<int> GetBroadcastShape(InTensors ins) {
// TODO(xiongkun03) check the operators and output
PADDLE_ENFORCE_EQ(ins.size(), 2, platform::errors::InvalidArgument(
"GetBroadcastShape Receive 2 tensors"
"but got [%d]",
ins.size()));
auto x_dim = ins[0]->dims();
auto y_dim = ins[1]->dims();
std::vector<int> broadcast_shape =
(x_dim.size() > y_dim.size() ? framework::vectorize<int>(x_dim)
: framework::vectorize<int>(y_dim));
int rank_min = std::min(x_dim.size(), y_dim.size());
int rank_x = x_dim.size();
int rank_y = y_dim.size();
int final_rank = broadcast_shape.size();
for (int i = 1; i <= rank_min; ++i) {
if (x_dim[rank_x - i] == y_dim[rank_y - i]) {
broadcast_shape[final_rank - i] = x_dim[rank_x - i];
continue;
}
if (x_dim[rank_x - i] == 1) {
broadcast_shape[final_rank - i] = y_dim[rank_y - i];
continue;
}
if (y_dim[rank_y - i] == 1) {
broadcast_shape[final_rank - i] = x_dim[rank_x - i];
continue;
}
PADDLE_THROW(platform::errors::InvalidArgument(
"Wrong Input Shape in broadcast operator: "
"Input(X)'s shape must follow the broadcast rule with Input(Y)'s "
"shape, but received [%s] (X) vs [%s] (Y).",
x_dim, y_dim));
}
return broadcast_shape;
}

template <typename DeviceContext, typename T>
struct DeviceIndependenceTensorOperations {
// 1. Device indenpendence, for kernel reuse.
// 2. Input and output is always tensor type.
// 3. output Tensor is alway allocated
// 4. Basic Tensor operator is supported
// 5. The Reused Operator Kernel should only be considered as
// a wrap function
using NameInTensorMap =
std::map<std::string, std::vector<const framework::Tensor*>>;
using NameOutTensor = std::vector<std::string>;

explicit DeviceIndependenceTensorOperations(
const framework::ExecutionContext& context)
: context(context) {}

framework::Tensor Pow(const framework::Tensor& x, float exp) {
framework::Tensor out;
auto for_range = GetForRange(x.numel());
int numel = x.numel();
PowFunctor<T> functor(x.data<T>(), out.mutable_data<T>(x.dims(), x.place()),
numel, exp);
for_range(functor);
return out;
}
framework::Tensor Matmul(const framework::Tensor& mat_a,
const framework::Tensor& mat_b, bool trans_a = false,
bool trans_b = false) {
framework::AttributeMap attrs;
attrs["trans_x"] = trans_a;
attrs["trans_y"] = trans_b;
NameInTensorMap inputs({{"X", {&mat_a}}, {"Y", {&mat_b}}});
auto a_dim = mat_a.dims();
auto b_dim = mat_b.dims();
std::vector<int> x_vec = framework::vectorize<int>(a_dim);
x_vec[x_vec.size() - 2] = a_dim[a_dim.size() - (trans_a ? 1 : 2)];
x_vec[x_vec.size() - 1] = b_dim[b_dim.size() - (trans_b ? 2 : 1)];
return CreateOpRunAndReturnTensor("matmul_v2", inputs, attrs, x_vec);
}
// transpose the last two dimision
framework::Tensor Transpose(const framework::Tensor& x) {
framework::Tensor out;
auto x_dim = x.dims();
auto x_vec = framework::vectorize<int>(x_dim);
int rank = x_vec.size();
std::swap(x_vec[rank - 1], x_vec[rank - 2]);
std::vector<int> out_shape = x_vec;
std::vector<int> axis(rank);
for (int i = 0; i < rank; ++i) {
axis[i] = i;
}
std::swap(axis[rank - 1], axis[rank - 2]);
framework::AttributeMap attrs;
attrs["axis"] = axis;
NameInTensorMap inputs({{"X", {&x}}});
return CreateOpRunAndReturnTensor("transpose2", inputs, attrs, out_shape,
{"Out", "XShape"});
}

framework::Tensor Diag(const framework::Tensor& x, int offset = 0,
int padding_value = 0) {
framework::AttributeMap attrs;
attrs["offset"] = offset;
attrs["padding_value"] = padding_value;
NameInTensorMap inputs({{"X", {&x}}});
int x_rank = x.dims().size();
std::vector<int> out_shape;
if (x_rank == 2) {
PADDLE_ENFORCE_EQ(x.dims()[0], x.dims()[1],
platform::errors::InvalidArgument(
"if X is a Matrix, then X must be square"));
out_shape.push_back(x.dims()[0]);
} else if (x_rank == 1) {
out_shape.push_back(x.dims()[0]);
out_shape.push_back(x.dims()[0]);
} else {
PADDLE_THROW(
platform::errors::InvalidArgument("Rank must less or equal than 2"));
}
return CreateOpRunAndReturnTensor("diag_v2", inputs, attrs, out_shape);
}

framework::Tensor Add(const framework::Tensor& x,
const framework::Tensor& y) {
InTensors ins({&x, &y});
framework::AttributeMap attrs;
attrs["axis"] = -1;
std::vector<int> out_shape = GetBroadcastShape({&x, &y});
NameInTensorMap inputs({{"X", {&x}}, {"Y", {&y}}});
return CreateOpRunAndReturnTensor("elementwise_add", inputs, attrs,
out_shape);
}

framework::Tensor Mul(const framework::Tensor& x,
const framework::Tensor& y) {
InTensors ins({&x, &y});
framework::AttributeMap attrs;
attrs["axis"] = -1;
std::vector<int> out_shape = GetBroadcastShape({&x, &y});
NameInTensorMap inputs({{"X", {&x}}, {"Y", {&y}}});
return CreateOpRunAndReturnTensor("elementwise_mul", inputs, attrs,
out_shape);
}

framework::Tensor Sub(const framework::Tensor& x,
const framework::Tensor& y) {
InTensors ins({&x, &y});
framework::AttributeMap attrs;
attrs["axis"] = -1;
std::vector<int> out_shape = GetBroadcastShape({&x, &y});
NameInTensorMap inputs({{"X", {&x}}, {"Y", {&y}}});
return CreateOpRunAndReturnTensor("elementwise_sub", inputs, attrs,
out_shape);
}

const framework::Tensor Unsqueeze(const framework::Tensor& x, int axis = 0) {
// don't copy data, only change the dims
framework::Tensor out;
out.ShareDataWith(x);
std::vector<int> out_shape = framework::vectorize<int>(x.dims());
if (axis >= 0) {
auto index = (out_shape.begin() + axis);
out_shape.insert(index, 1);
} else if (axis < 0) {
auto index = (out_shape.end() + axis + 1);
out_shape.insert(index, 1);
}
out.Resize(framework::make_ddim(out_shape));
return out;
}

framework::Tensor Zeros(std::vector<int> shape,
framework::proto::VarType::Type dtype,
float fill_value) {
framework::AttributeMap attrs;
attrs["dtype"] = dtype;
attrs["shape"] = shape;
attrs["value"] = fill_value;
NameInTensorMap inputs({});
return CreateOpRunAndReturnTensor("fill_constant", inputs, attrs, shape);
}

framework::Tensor Infinits(std::vector<int> shape,
framework::proto::VarType::Type dtype) {
framework::AttributeMap attrs;
attrs["dtype"] = dtype;
attrs["shape"] = shape;
attrs["str_value"] = std::string("inf");
NameInTensorMap inputs({});
return CreateOpRunAndReturnTensor("fill_constant", inputs, attrs, shape);
}

framework::Tensor Eye(int n, framework::proto::VarType::Type dtype) {
auto output = Zeros({n}, dtype, 1);
auto ret = Diag(output);
return ret;
}

framework::Tensor Slice(const framework::Tensor& x, std::vector<int> axes,
std::vector<int> starts, std::vector<int> ends) {
std::vector<int> new_axes = axes;
NameInTensorMap inputs({{"Input", {&x}}});
std::vector<int> out_shape = framework::vectorize<int>(x.dims());
int rank = out_shape.size();
PADDLE_ENFORCE_EQ(
axes.size(), starts.size(),
platform::errors::InvalidArgument("Slice Operator Argument Invalided"));
PADDLE_ENFORCE_EQ(
ends.size(), starts.size(),
platform::errors::InvalidArgument("Slice Operator Argument Invalided"));
for (unsigned int i = 0; i < axes.size(); ++i) {
int axis = axes[i];
if (axis < 0) axis = rank + axis;
new_axes[i] = axis; // change negative to positive
int st = starts[i];
int ed = ends[i];
PADDLE_ENFORCE_GT(ed, st,
platform::errors::InvalidArgument(
"C++ Slice Operation Not Support End < Start"));
out_shape[axis] = ed - st;
}
framework::AttributeMap attrs;
attrs["axes"] = new_axes;
attrs["starts"] = starts;
attrs["ends"] = ends;
return CreateOpRunAndReturnTensor("slice", inputs, attrs, out_shape);
}

private:
const framework::ExecutionContext& context;
BlasT<DeviceContext, T> GetBlas() {
return math::GetBlas<DeviceContext, T>(context);
}
platform::ForRange<DeviceContext> GetForRange(int numel) {
auto& dev_ctx = context.template device_context<DeviceContext>();
return platform::ForRange<DeviceContext>(dev_ctx, numel);
}

framework::Tensor CreateOpRunAndReturnTensor(
const std::string& type, const NameInTensorMap& inputs,
const framework::AttributeMap& attrs, std::vector<int> out_shape,
NameOutTensor out_str = {"Out"}) {
// varialble set dims must be LoDTensor / SelectedRowTensor
framework::Scope& local_scope = context.scope().NewScope();

framework::VariableNameMap op_outputs;
for (auto out_name : out_str) {
local_scope.Var("tmp_" + out_name)->GetMutable<framework::LoDTensor>();
op_outputs[out_name].emplace_back("tmp_" + out_name);
}
auto out_var = local_scope.Var("tmp_Out"); // return the Out
// create Out Tensor and allocat memory
out_var->GetMutable<framework::LoDTensor>()->mutable_data<T>(
framework::make_ddim(out_shape), context.GetPlace());
// framework::make_ddim(out_shape)
framework::VariableNameMap op_inputs;
int counter = 0;
for (auto item : inputs) {
auto& tensors = item.second;
std::vector<std::string> name_vector;
for (auto each_tensor : tensors) {
// create score variable and reset the tensor.
std::string _name = "tmp" + std::to_string(counter++);
auto in_var = local_scope.Var(_name); // create
framework::LoDTensor tmp_tns;
tmp_tns.ShareDataWith(*each_tensor); // tensor -> lodtensor
(*in_var->GetMutable<framework::LoDTensor>()) =
tmp_tns; // initialize and set value
name_vector.emplace_back(_name);
}
op_inputs[item.first] = name_vector;
}
auto op =
framework::OpRegistry::CreateOp(type, op_inputs, op_outputs, attrs);
op->Run(local_scope, context.GetPlace());
framework::Tensor out;
out.ShareDataWith(*(out_var->GetMutable<framework::LoDTensor>()));
out.Resize(framework::make_ddim(out_shape));
context.scope().DeleteScope(&local_scope);
return out;
}
};
} // namespace math
} // namespace operators
} // namespace paddle
Loading