Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[Paddle Inference]Add skip layernorm TRT converter unittest. #35259

Merged
merged 11 commits into from
Sep 14, 2021
Original file line number Diff line number Diff line change
@@ -0,0 +1,214 @@
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from trt_layer_auto_scan_test import TrtLayerAutoScanTest, SkipReasons
from program_config import TensorConfig, ProgramConfig
import numpy as np
import paddle.inference as paddle_infer
from functools import partial
from typing import Optional, List, Callable, Dict, Any, Set


class TrtConvertSkipLayernormTest(TrtLayerAutoScanTest):
def is_program_valid(self, program_config: ProgramConfig) -> bool:
inputs = program_config.inputs
weights = program_config.weights
outputs = program_config.outputs

attrs = [
program_config.ops[i].attrs
for i in range(len(program_config.ops))
]

#The input dimension should be less than or equal to the set axis.
if attrs[0]['begin_norm_axis'] >= 0:
if len(inputs['skip_layernorm_inputX_data'].shape) <= attrs[0][
'begin_norm_axis']:
return False

return True

def sample_program_configs(self):
def generate_input1(attrs: List[Dict[str, Any]], batch):
if self.dims == 4:
return np.ones([batch, 6, 128, 768]).astype(np.float32)
elif self.dims == 3:
return np.ones([batch, 128, 768]).astype(np.float32)
elif self.dims == 2:
return np.ones([batch, 128, 768]).astype(np.float32)

def generate_input2(attrs: List[Dict[str, Any]], batch):
if self.dims == 4:
return np.ones([batch, 6, 128, 768]).astype(np.float32)
elif self.dims == 3:
return np.ones([batch, 128, 768]).astype(np.float32)
elif self.dims == 2:
return np.ones([batch, 128, 768]).astype(np.float32)

def generate_weight1(attrs: List[Dict[str, Any]]):
return np.random.random([768]).astype(np.float32)

def generate_weight2(attrs: List[Dict[str, Any]]):
return np.random.random([768]).astype(np.float32)

for dims in [3, 4]:
for batch in [1, 2, 4]:
for epsilon in [1e-5]:
for begin_norm_axis in [0, 1, 2, -1]:
for enable_int8 in [False, True]:
self.dims = dims
dics = [{
"epsilon": epsilon,
"begin_norm_axis": begin_norm_axis,
"enable_int8": enable_int8
}, {}]
ops_config = [{
"op_type": "skip_layernorm",
"op_inputs": {
"X": ["skip_layernorm_inputX_data"],
"Y": ["skip_layernorm_inputY_data"],
"Bias": ["Bias"],
"Scale": ["Scale"]
},
"op_outputs": {
"Out": ["skip_layernorm_out"]
},
"op_attrs": dics[0]
}]
ops = self.generate_op_config(ops_config)
program_config = ProgramConfig(
ops=ops,
weights={
"Bias": TensorConfig(data_gen=partial(
generate_weight1, dics)),
"Scale": TensorConfig(data_gen=partial(
generate_weight2, dics))
},
inputs={
"skip_layernorm_inputX_data": TensorConfig(
data_gen=partial(generate_input1, dics,
batch)),
"skip_layernorm_inputY_data": TensorConfig(
data_gen=partial(generate_input2, dics,
batch))
},
outputs=["skip_layernorm_out"])

yield program_config

def sample_predictor_configs(
self, program_config) -> (paddle_infer.Config, List[int], float):
def generate_dynamic_shape(attrs):
if self.dims == 4:
self.dynamic_shape.min_input_shape = {
"skip_layernorm_inputX_data": [1, 6, 128, 768],
"skip_layernorm_inputY_data": [1, 6, 128, 768],
"Bias": [768],
"Scale": [768]
}
self.dynamic_shape.max_input_shape = {
"skip_layernorm_inputX_data": [4, 6, 768, 3072],
"skip_layernorm_inputY_data": [4, 6, 768, 3072],
"Bias": [3072],
"Scale": [3072]
}
self.dynamic_shape.opt_input_shape = {
"skip_layernorm_inputX_data": [1, 6, 128, 768],
"skip_layernorm_inputY_data": [1, 6, 128, 768],
"Bias": [768],
"Scale": [768]
}
elif self.dims == 3:
self.dynamic_shape.min_input_shape = {
"skip_layernorm_inputX_data": [1, 128, 768],
"skip_layernorm_inputY_data": [1, 128, 768],
"Bias": [768],
"Scale": [768]
}
self.dynamic_shape.max_input_shape = {
"skip_layernorm_inputX_data": [4, 768, 3072],
"skip_layernorm_inputY_data": [4, 768, 3072],
"Bias": [3072],
"Scale": [3072]
}
self.dynamic_shape.opt_input_shape = {
"skip_layernorm_inputX_data": [1, 128, 768],
"skip_layernorm_inputY_data": [1, 128, 768],
"Bias": [768],
"Scale": [768]
}
elif self.dims == 2:
self.dynamic_shape.min_input_shape = {
"skip_layernorm_inputX_data": [1, 768],
"skip_layernorm_inputY_data": [1, 768],
"Bias": [768],
"Scale": [768]
}
self.dynamic_shape.max_input_shape = {
"skip_layernorm_inputX_data": [4, 3072],
"skip_layernorm_inputY_data": [4, 3072],
"Bias": [3072],
"Scale": [3072]
}
self.dynamic_shape.opt_input_shape = {
"skip_layernorm_inputX_data": [1, 768],
"skip_layernorm_inputY_data": [1, 768],
"Bias": [768],
"Scale": [768]
}

def clear_dynamic_shape():
self.dynamic_shape.min_input_shape = {}
self.dynamic_shape.max_input_shape = {}
self.dynamic_shape.opt_input_shape = {}

def generate_trt_nodes_num(attrs, dynamic_shape):
if dynamic_shape == True:
return 1, 3
else:
return 0, 4

attrs = [
program_config.ops[i].attrs
for i in range(len(program_config.ops))
]
# for static_shape
clear_dynamic_shape()

self.trt_param.precision = paddle_infer.PrecisionType.Float32
yield self.create_inference_config(), generate_trt_nodes_num(
attrs, False), 1e-5
self.trt_param.precision = paddle_infer.PrecisionType.Half
yield self.create_inference_config(), generate_trt_nodes_num(
attrs, False), 1e-5

# for dynamic_shape
generate_dynamic_shape(attrs)
self.trt_param.precision = paddle_infer.PrecisionType.Float32
yield self.create_inference_config(), generate_trt_nodes_num(attrs,
True), 1e-5
self.trt_param.precision = paddle_infer.PrecisionType.Half
yield self.create_inference_config(), generate_trt_nodes_num(attrs,
True), 1e-5

def add_skip_trt_case(self):
pass

def test(self):
self.add_skip_trt_case()
self.run_test()


if __name__ == "__main__":
unittest.main()