-
Notifications
You must be signed in to change notification settings - Fork 5.6k
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
[Paddle Inference]Add BN op TRT converter unittest #35527
Merged
Merged
Changes from all commits
Commits
Show all changes
5 commits
Select commit
Hold shift + click to select a range
File filter
Filter by extension
Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
220 changes: 220 additions & 0 deletions
220
python/paddle/fluid/tests/unittests/ir/inference/test_trt_convert_batch_norm.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,220 @@ | ||
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
|
||
from trt_layer_auto_scan_test import TrtLayerAutoScanTest, SkipReasons | ||
from program_config import TensorConfig, ProgramConfig | ||
import numpy as np | ||
import paddle.inference as paddle_infer | ||
from functools import partial | ||
from typing import Optional, List, Callable, Dict, Any, Set | ||
|
||
|
||
class TrtConvertBatchNormTest(TrtLayerAutoScanTest): | ||
def is_program_valid(self, program_config: ProgramConfig) -> bool: | ||
return True | ||
|
||
def sample_program_configs(self): | ||
def generate_input1(attrs: List[Dict[str, Any]], batch): | ||
if self.dims == 4: | ||
if attrs[0]['data_layout'] == "NCHW": | ||
return np.ones([batch, 3, 24, 24]).astype(np.float32) | ||
elif attrs[0]['data_layout'] == "NHWC": | ||
return np.ones([batch, 24, 24, 3]).astype(np.float32) | ||
elif self.dims == 3: | ||
return np.ones([batch, 3, 24]).astype(np.float32) | ||
elif self.dims == 2: | ||
return np.ones([batch, 3]).astype(np.float32) | ||
|
||
def generate_bias(attrs: List[Dict[str, Any]], batch): | ||
return np.full((3), 0.9).astype("float32") | ||
|
||
def generate_mean(attrs: List[Dict[str, Any]], batch): | ||
return np.full((3), 0.9).astype("float32") | ||
|
||
def generate_scale(attrs: List[Dict[str, Any]], batch): | ||
return np.full((3), 1.1).astype("float32") | ||
|
||
def generate_variance(attrs: List[Dict[str, Any]], batch): | ||
return np.full((3), 1.2).astype("float32") | ||
|
||
def generate_MomentumTensor(attrs: List[Dict[str, Any]], batch): | ||
return np.full((3), 0.9).astype("float32") | ||
|
||
for dims in [2, 3, 4]: | ||
for num_input in [0, 1]: | ||
for batch in [1, 2, 4]: | ||
for epsilon in [1e-6, 1e-5, 1e-4]: | ||
for data_layout in ["NCHW"]: | ||
for momentum in [0.9, 0.8]: | ||
self.num_input = num_input | ||
self.dims = dims | ||
dics = [{ | ||
"epsilon": epsilon, | ||
"data_layout": data_layout, | ||
"momentum": momentum, | ||
"is_test": True, | ||
"trainable_statistics": False | ||
}, {}] | ||
dics_intput = [{ | ||
"X": ["batch_norm_input"], | ||
"Bias": ["Bias"], | ||
"Mean": ["Mean"], | ||
"Scale": ["Scale"], | ||
"Variance": ["Variance"], | ||
"MomentumTensor": ["MomentumTensor"] | ||
}, { | ||
"X": ["batch_norm_input"], | ||
"Bias": ["Bias"], | ||
"Mean": ["Mean"], | ||
"Scale": ["Scale"], | ||
"Variance": ["Variance"] | ||
}] | ||
dics_intputs = [{ | ||
"Bias": TensorConfig(data_gen=partial( | ||
generate_bias, dics, batch)), | ||
"Mean": TensorConfig(data_gen=partial( | ||
generate_mean, dics, batch)), | ||
"Scale": TensorConfig(data_gen=partial( | ||
generate_scale, dics, batch)), | ||
"Variance": TensorConfig(data_gen=partial( | ||
generate_variance, dics, batch)), | ||
"MomentumTensor": | ||
TensorConfig(data_gen=partial( | ||
generate_MomentumTensor, dics, batch)), | ||
}, { | ||
"Bias": TensorConfig(data_gen=partial( | ||
generate_bias, dics, batch)), | ||
"Mean": TensorConfig(data_gen=partial( | ||
generate_mean, dics, batch)), | ||
"Scale": TensorConfig(data_gen=partial( | ||
generate_scale, dics, batch)), | ||
"Variance": TensorConfig(data_gen=partial( | ||
generate_variance, dics, batch)) | ||
}] | ||
ops_config = [{ | ||
"op_type": "batch_norm", | ||
"op_inputs": dics_intput[num_input], | ||
"op_outputs": { | ||
"Y": ["batch_norm_out"], | ||
"MeanOut": ["Mean"], | ||
"VarianceOut": ["Variance"], | ||
"SavedMean": ["SavedMean"], | ||
"SavedVariance": ["SavedVariance"] | ||
}, | ||
"op_attrs": dics[0] | ||
}] | ||
ops = self.generate_op_config(ops_config) | ||
program_config = ProgramConfig( | ||
ops=ops, | ||
weights=dics_intputs[num_input], | ||
inputs={ | ||
"batch_norm_input": TensorConfig( | ||
data_gen=partial(generate_input1, | ||
dics, batch)) | ||
}, | ||
outputs=["batch_norm_out"]) | ||
|
||
yield program_config | ||
|
||
def sample_predictor_configs( | ||
self, program_config) -> (paddle_infer.Config, List[int], float): | ||
def generate_dynamic_shape(attrs): | ||
if self.dims == 4: | ||
if attrs[0]['data_layout'] == "NCHW": | ||
self.dynamic_shape.min_input_shape = { | ||
"batch_norm_input": [1, 3, 24, 24] | ||
} | ||
self.dynamic_shape.max_input_shape = { | ||
"batch_norm_input": [4, 3, 48, 48] | ||
} | ||
self.dynamic_shape.opt_input_shape = { | ||
"batch_norm_input": [1, 3, 24, 48] | ||
} | ||
elif attrs[0]['data_layout'] == "NHWC": | ||
self.dynamic_shape.min_input_shape = { | ||
"batch_norm_input": [1, 24, 24, 3] | ||
} | ||
self.dynamic_shape.max_input_shape = { | ||
"batch_norm_input": [4, 48, 48, 3] | ||
} | ||
self.dynamic_shape.opt_input_shape = { | ||
"batch_norm_input": [1, 24, 48, 3] | ||
} | ||
elif self.dims == 3: | ||
self.dynamic_shape.min_input_shape = { | ||
"batch_norm_input": [1, 3, 24] | ||
} | ||
self.dynamic_shape.max_input_shape = { | ||
"batch_norm_input": [4, 3, 48] | ||
} | ||
self.dynamic_shape.opt_input_shape = { | ||
"batch_norm_input": [1, 3, 48] | ||
} | ||
elif self.dims == 2: | ||
self.dynamic_shape.min_input_shape = { | ||
"batch_norm_input": [1, 3] | ||
} | ||
self.dynamic_shape.max_input_shape = { | ||
"batch_norm_input": [4, 3] | ||
} | ||
self.dynamic_shape.opt_input_shape = { | ||
"batch_norm_input": [1, 3] | ||
} | ||
|
||
def clear_dynamic_shape(): | ||
self.dynamic_shape.min_input_shape = {} | ||
self.dynamic_shape.max_input_shape = {} | ||
self.dynamic_shape.opt_input_shape = {} | ||
|
||
def generate_trt_nodes_num(attrs, dynamic_shape): | ||
return 1, 2 | ||
|
||
attrs = [ | ||
program_config.ops[i].attrs | ||
for i in range(len(program_config.ops)) | ||
] | ||
# for static_shape | ||
clear_dynamic_shape() | ||
self.trt_param.precision = paddle_infer.PrecisionType.Float32 | ||
yield self.create_inference_config(), generate_trt_nodes_num( | ||
attrs, False), 1e-5 | ||
self.trt_param.precision = paddle_infer.PrecisionType.Half | ||
yield self.create_inference_config(), generate_trt_nodes_num( | ||
attrs, False), 1e-5 | ||
|
||
# for dynamic_shape | ||
generate_dynamic_shape(attrs) | ||
self.trt_param.precision = paddle_infer.PrecisionType.Float32 | ||
yield self.create_inference_config(), generate_trt_nodes_num(attrs, | ||
True), 1e-5 | ||
self.trt_param.precision = paddle_infer.PrecisionType.Half | ||
yield self.create_inference_config(), generate_trt_nodes_num(attrs, | ||
True), 1e-5 | ||
|
||
def add_skip_trt_case(self): | ||
def teller1(program_config, predictor_config): | ||
if len(program_config.weights) == 5: | ||
return True | ||
return False | ||
|
||
self.add_skip_case(teller1, SkipReasons.TRT_NOT_SUPPORT, | ||
"INPUT MomentumTensor NOT SUPPORT") | ||
|
||
def test(self): | ||
self.add_skip_trt_case() | ||
self.run_test() | ||
|
||
|
||
if __name__ == "__main__": | ||
unittest.main() |
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
这几个属性在推理前向计算中应该用不到,可以不用在单测中叉乘。
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
data_layout、is_test、trainable_statistics在单测中必须要添加,否则会报错