Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[Paddle Inference]Add BN op TRT converter unittest #35527

Merged
merged 5 commits into from
Sep 14, 2021
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
7 changes: 6 additions & 1 deletion paddle/fluid/inference/tensorrt/op_teller.cc
Original file line number Diff line number Diff line change
Expand Up @@ -482,7 +482,12 @@ bool OpTeller::Tell(const framework::ir::Node* node, bool use_no_calib_int8,
return false;
}
}

auto batch_norm_inputs = desc.Inputs();
if (batch_norm_inputs.find("MomentumTensor") != batch_norm_inputs.end()) {
if (desc.Input("MomentumTensor").size() >= 1) {
return false;
}
}
if (desc.Output("Y").size() != 1) {
VLOG(3) << "Invalid output Y's size of batch_norm TRT "
"converter. Expected 1, received "
Expand Down
Original file line number Diff line number Diff line change
@@ -0,0 +1,220 @@
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from trt_layer_auto_scan_test import TrtLayerAutoScanTest, SkipReasons
from program_config import TensorConfig, ProgramConfig
import numpy as np
import paddle.inference as paddle_infer
from functools import partial
from typing import Optional, List, Callable, Dict, Any, Set


class TrtConvertBatchNormTest(TrtLayerAutoScanTest):
def is_program_valid(self, program_config: ProgramConfig) -> bool:
return True

def sample_program_configs(self):
def generate_input1(attrs: List[Dict[str, Any]], batch):
if self.dims == 4:
if attrs[0]['data_layout'] == "NCHW":
return np.ones([batch, 3, 24, 24]).astype(np.float32)
elif attrs[0]['data_layout'] == "NHWC":
return np.ones([batch, 24, 24, 3]).astype(np.float32)
elif self.dims == 3:
return np.ones([batch, 3, 24]).astype(np.float32)
elif self.dims == 2:
return np.ones([batch, 3]).astype(np.float32)

def generate_bias(attrs: List[Dict[str, Any]], batch):
return np.full((3), 0.9).astype("float32")

def generate_mean(attrs: List[Dict[str, Any]], batch):
return np.full((3), 0.9).astype("float32")

def generate_scale(attrs: List[Dict[str, Any]], batch):
return np.full((3), 1.1).astype("float32")

def generate_variance(attrs: List[Dict[str, Any]], batch):
return np.full((3), 1.2).astype("float32")

def generate_MomentumTensor(attrs: List[Dict[str, Any]], batch):
return np.full((3), 0.9).astype("float32")

for dims in [2, 3, 4]:
for num_input in [0, 1]:
for batch in [1, 2, 4]:
for epsilon in [1e-6, 1e-5, 1e-4]:
for data_layout in ["NCHW"]:
for momentum in [0.9, 0.8]:
self.num_input = num_input
self.dims = dims
dics = [{
"epsilon": epsilon,
"data_layout": data_layout,
"momentum": momentum,
"is_test": True,
"trainable_statistics": False
Comment on lines +64 to +67
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

这几个属性在推理前向计算中应该用不到,可以不用在单测中叉乘。

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

data_layout、is_test、trainable_statistics在单测中必须要添加,否则会报错

}, {}]
dics_intput = [{
"X": ["batch_norm_input"],
"Bias": ["Bias"],
"Mean": ["Mean"],
"Scale": ["Scale"],
"Variance": ["Variance"],
"MomentumTensor": ["MomentumTensor"]
}, {
"X": ["batch_norm_input"],
"Bias": ["Bias"],
"Mean": ["Mean"],
"Scale": ["Scale"],
"Variance": ["Variance"]
}]
dics_intputs = [{
"Bias": TensorConfig(data_gen=partial(
generate_bias, dics, batch)),
"Mean": TensorConfig(data_gen=partial(
generate_mean, dics, batch)),
"Scale": TensorConfig(data_gen=partial(
generate_scale, dics, batch)),
"Variance": TensorConfig(data_gen=partial(
generate_variance, dics, batch)),
"MomentumTensor":
TensorConfig(data_gen=partial(
generate_MomentumTensor, dics, batch)),
}, {
"Bias": TensorConfig(data_gen=partial(
generate_bias, dics, batch)),
"Mean": TensorConfig(data_gen=partial(
generate_mean, dics, batch)),
"Scale": TensorConfig(data_gen=partial(
generate_scale, dics, batch)),
"Variance": TensorConfig(data_gen=partial(
generate_variance, dics, batch))
}]
ops_config = [{
"op_type": "batch_norm",
"op_inputs": dics_intput[num_input],
"op_outputs": {
"Y": ["batch_norm_out"],
"MeanOut": ["Mean"],
"VarianceOut": ["Variance"],
"SavedMean": ["SavedMean"],
"SavedVariance": ["SavedVariance"]
},
"op_attrs": dics[0]
}]
ops = self.generate_op_config(ops_config)
program_config = ProgramConfig(
ops=ops,
weights=dics_intputs[num_input],
inputs={
"batch_norm_input": TensorConfig(
data_gen=partial(generate_input1,
dics, batch))
},
outputs=["batch_norm_out"])

yield program_config

def sample_predictor_configs(
self, program_config) -> (paddle_infer.Config, List[int], float):
def generate_dynamic_shape(attrs):
if self.dims == 4:
if attrs[0]['data_layout'] == "NCHW":
self.dynamic_shape.min_input_shape = {
"batch_norm_input": [1, 3, 24, 24]
}
self.dynamic_shape.max_input_shape = {
"batch_norm_input": [4, 3, 48, 48]
}
self.dynamic_shape.opt_input_shape = {
"batch_norm_input": [1, 3, 24, 48]
}
elif attrs[0]['data_layout'] == "NHWC":
self.dynamic_shape.min_input_shape = {
"batch_norm_input": [1, 24, 24, 3]
}
self.dynamic_shape.max_input_shape = {
"batch_norm_input": [4, 48, 48, 3]
}
self.dynamic_shape.opt_input_shape = {
"batch_norm_input": [1, 24, 48, 3]
}
elif self.dims == 3:
self.dynamic_shape.min_input_shape = {
"batch_norm_input": [1, 3, 24]
}
self.dynamic_shape.max_input_shape = {
"batch_norm_input": [4, 3, 48]
}
self.dynamic_shape.opt_input_shape = {
"batch_norm_input": [1, 3, 48]
}
elif self.dims == 2:
self.dynamic_shape.min_input_shape = {
"batch_norm_input": [1, 3]
}
self.dynamic_shape.max_input_shape = {
"batch_norm_input": [4, 3]
}
self.dynamic_shape.opt_input_shape = {
"batch_norm_input": [1, 3]
}

def clear_dynamic_shape():
self.dynamic_shape.min_input_shape = {}
self.dynamic_shape.max_input_shape = {}
self.dynamic_shape.opt_input_shape = {}

def generate_trt_nodes_num(attrs, dynamic_shape):
return 1, 2

attrs = [
program_config.ops[i].attrs
for i in range(len(program_config.ops))
]
# for static_shape
clear_dynamic_shape()
self.trt_param.precision = paddle_infer.PrecisionType.Float32
yield self.create_inference_config(), generate_trt_nodes_num(
attrs, False), 1e-5
self.trt_param.precision = paddle_infer.PrecisionType.Half
yield self.create_inference_config(), generate_trt_nodes_num(
attrs, False), 1e-5

# for dynamic_shape
generate_dynamic_shape(attrs)
self.trt_param.precision = paddle_infer.PrecisionType.Float32
yield self.create_inference_config(), generate_trt_nodes_num(attrs,
True), 1e-5
self.trt_param.precision = paddle_infer.PrecisionType.Half
yield self.create_inference_config(), generate_trt_nodes_num(attrs,
True), 1e-5

def add_skip_trt_case(self):
def teller1(program_config, predictor_config):
if len(program_config.weights) == 5:
return True
return False

self.add_skip_case(teller1, SkipReasons.TRT_NOT_SUPPORT,
"INPUT MomentumTensor NOT SUPPORT")

def test(self):
self.add_skip_trt_case()
self.run_test()


if __name__ == "__main__":
unittest.main()