Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Refactor dropout cuda impl for code reuse. #35621

Merged
Merged
Show file tree
Hide file tree
Changes from 4 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
297 changes: 297 additions & 0 deletions paddle/fluid/operators/dropout_impl.cu.h
Original file line number Diff line number Diff line change
@@ -0,0 +1,297 @@
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

#include <string>

#ifdef PADDLE_WITH_CUDA
#include <cuda.h>
#include <curand_kernel.h>
#include "paddle/fluid/platform/dynload/curand.h"
#endif
#ifdef PADDLE_WITH_HIP
#include <hip/hip_runtime.h>
#include <hiprand_kernel.h>
#include "paddle/fluid/platform/dynload/hiprand.h"
#endif

#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/generator.h"
#include "paddle/fluid/framework/tensor_util.h"
#include "paddle/fluid/operators/dropout_op.h"
#include "paddle/fluid/platform/aligned_vector.h"
#include "paddle/fluid/platform/gpu_launch_config.h"

namespace paddle {
namespace operators {

template <typename T, typename MaskType>
__global__ void RandomGenerator(const size_t n, uint64_t seed,
const float dropout_prob, const T* src,
MaskType* mask, T* dst,
bool is_upscale_in_train, uint64_t increment) {
int idx = blockDim.x * blockIdx.x + threadIdx.x;
#ifdef PADDLE_WITH_HIP
hiprandStatePhilox4_32_10_t state;
hiprand_init(seed, idx, increment, &state);
#else
curandStatePhilox4_32_10_t state;
curand_init(seed, idx, increment, &state);
#endif

MaskType mask_val;
T dst_val;
T factor = static_cast<T>(1.0f / (1.0f - dropout_prob));
for (; idx < n; idx += blockDim.x * gridDim.x) {
T src_val = src[idx];
#ifdef PADDLE_WITH_HIP
if (hiprand_uniform(&state) < dropout_prob) {
#else
if (curand_uniform(&state) < dropout_prob) {
#endif
mask_val = 0;
dst_val = 0;
} else {
mask_val = 1;
dst_val = is_upscale_in_train ? src_val * factor : src_val;
}
mask[idx] = mask_val;
dst[idx] = dst_val;
}
}

template <typename T, typename MaskType, int VecSize>
__global__ void VectorizedRandomGenerator(const size_t n, uint64_t seed,
const float dropout_prob,
const T* src, MaskType* mask, T* dst,
bool is_upscale_in_train,
uint64_t increment) {
using LoadT = platform::AlignedVector<T, VecSize>;
using MaskLoadT = platform::AlignedVector<MaskType, VecSize>;

#ifdef PADDLE_WITH_HIP
int64_t idx = hipBlockDim_x * hipBlockIdx_x + hipThreadIdx_x;
hiprandStatePhilox4_32_10_t state;
hiprand_init(seed, idx, increment, &state);
#else
int64_t idx = blockDim.x * blockIdx.x + threadIdx.x;
curandStatePhilox4_32_10_t state;
curand_init(seed, idx, increment, &state);
#endif

T factor = static_cast<T>(1.0f / (1.0f - dropout_prob));
for (int i = idx * VecSize; i < n; i += blockDim.x * gridDim.x * VecSize) {
LoadT src_val;
platform::Load<T, VecSize>(&src[i], &src_val);

#ifdef PADDLE_WITH_HIP
float4 rand = hiprand_uniform4(&state);
#else
float4 rand = curand_uniform4(&state);
#endif

LoadT dst_val;
MaskLoadT mask_val;

#pragma unroll
for (int j = 0; j < VecSize; j++) {
if ((&rand.x)[j] < dropout_prob) {
dst_val[j] = 0;
mask_val[j] = 0;
} else {
dst_val[j] = is_upscale_in_train ? src_val[j] * factor : src_val[j];
mask_val[j] = 1;
}
}

platform::Store<T, VecSize>(dst_val, &dst[i]);
platform::Store<MaskType, VecSize>(mask_val, &mask[i]);
}
}

template <typename T, typename MaskType, int VecSize>
__global__ void DropoutGradCUDAKernel(const T* dout, const MaskType* mask,
const T factor, const int64_t size,
T* dx) {
using LoadT = platform::AlignedVector<T, VecSize>;
using MaskLoadT = platform::AlignedVector<MaskType, VecSize>;

int64_t idx = blockDim.x * blockIdx.x + threadIdx.x;
for (int i = idx * VecSize; i < size; i += blockDim.x * gridDim.x * VecSize) {
LoadT dout_val;
platform::Load<T, VecSize>(&dout[i], &dout_val);

MaskLoadT mask_val;
platform::Load<MaskType, VecSize>(&mask[i], &mask_val);

LoadT dx_val;

#pragma unroll
for (int j = 0; j < VecSize; j++) {
dx_val[j] = dout_val[j] * static_cast<T>(mask_val[j]) * factor;
}

platform::Store<T, VecSize>(dx_val, &dx[i]);
}
}

template <typename T>
void DropoutFwGPUKernelDriver(const platform::CUDADeviceContext& dev_ctx,
bool is_test,
const std::string dropout_implementation,
float dropout_prob, bool upscale_in_train,
bool is_fix_seed, int seed_val, const Tensor& x,
const Tensor* seed, Tensor* mask, Tensor* y) {
auto& place = *dev_ctx.eigen_device();

if (!is_test) {
int64_t x_numel = x.numel();
auto stream = dev_ctx.stream();
auto* mask_data = mask->data<uint8_t>();
size_t size = framework::product(mask->dims());

auto* x_data = x.data<T>();
auto* y_data = y->data<T>();
if (dropout_prob == 1.0f) {
#ifdef PADDLE_WITH_HIP
PADDLE_ENFORCE_CUDA_SUCCESS(
hipMemsetAsync(y_data, 0, x_numel * sizeof(T), stream));
PADDLE_ENFORCE_CUDA_SUCCESS(
hipMemsetAsync(mask_data, 0, x_numel * sizeof(*mask_data), stream));
#else
PADDLE_ENFORCE_CUDA_SUCCESS(
cudaMemsetAsync(y_data, 0, x_numel * sizeof(T), stream));
PADDLE_ENFORCE_CUDA_SUCCESS(
cudaMemsetAsync(mask_data, 0, x_numel * sizeof(*mask_data), stream));
#endif
return;
}

platform::GpuLaunchConfig config =
platform::GetGpuLaunchConfig1D(dev_ctx, size);

// increment is used to set the args(offset) of curand_init, which defines
// offset in subsequence.
// The detail:
// https://docs.nvidia.com/cuda/curand/device-api-overview.html
// Increment should be at least the number of curand() random numbers used
// in each thread to avoid the random number generated this time being the
// same as the previous calls.
uint64_t seed_data;
uint64_t increment;
int vec_size = platform::GetVectorizedSize<T>(x_data);
auto offset = ((x_numel - 1) / (config.block_per_grid.x *
config.thread_per_block.x * vec_size) +
1) *
vec_size;
int device_id =
BOOST_GET_CONST(platform::CUDAPlace, dev_ctx.GetPlace()).GetDeviceId();
auto gen_cuda = framework::GetDefaultCUDAGenerator(device_id);

if ((seed) && platform::is_gpu_place(seed->place())) {
framework::Tensor seed_cpu_tensor;
TensorCopySync(*seed, platform::CPUPlace(), &seed_cpu_tensor);
seed_data = static_cast<uint64_t>(seed_cpu_tensor.data<int>()[0]);
increment = offset;
} else if (gen_cuda->GetIsInitPy() && (!is_fix_seed)) {
auto seed_offset = gen_cuda->IncrementOffset(offset);
seed_data = seed_offset.first;
increment = seed_offset.second;
} else {
if (seed) {
seed_data = *(seed->data<int>());
} else {
std::random_device rnd;
seed_data = is_fix_seed ? seed_val : rnd();
}
increment = offset;
}

#ifdef __HIPCC__
if (vec_size == 4 && size % 4 == 0) {
hipLaunchKernelGGL(
HIP_KERNEL_NAME(VectorizedRandomGenerator<T, uint8_t, 4>),
config.block_per_grid, config.thread_per_block, 0, stream, size,
seed_data, dropout_prob, x_data, mask_data, y_data, upscale_in_train,
increment);
} else {
hipLaunchKernelGGL(HIP_KERNEL_NAME(RandomGenerator<T, uint8_t>),
config.block_per_grid, config.thread_per_block, 0,
stream, size, seed_data, dropout_prob, x_data,
mask_data, y_data, upscale_in_train, increment);
}
#else
if (vec_size == 4 && size % 4 == 0) {
VectorizedRandomGenerator<
T, uint8_t,
4><<<config.block_per_grid, config.thread_per_block, 0, stream>>>(
size, seed_data, dropout_prob, x_data, mask_data, y_data,
upscale_in_train, increment);
} else {
RandomGenerator<T, uint8_t><<<config.block_per_grid,
config.thread_per_block, 0, stream>>>(
size, seed_data, dropout_prob, x_data, mask_data, y_data,
upscale_in_train, increment);
}
#endif
} else {
auto X = EigenMatrix<T>::Reshape(x, 1);
auto Y = EigenMatrix<T>::Reshape(*y, 1);
if (upscale_in_train) {
Y.device(place) = X;
} else {
Y.device(place) = X * static_cast<T>(1.0f - dropout_prob);
}
}
}

template <typename T>
void DropoutGradGPUKernelDriver(const platform::CUDADeviceContext& dev_ctx,
const std::string dropout_implementation,
float dropout_prob, const Tensor& grad_y,
const Tensor& mask, int64_t size,
Tensor* grad_x) {
auto M = EigenVector<uint8_t>::Flatten(mask);
auto dX = EigenVector<T>::Flatten(*grad_x);
auto dY = EigenVector<T>::Flatten(grad_y);

auto& place = *dev_ctx.eigen_device();
if (dropout_implementation == "upscale_in_train") {
if (dropout_prob == 1.0f) {
dX.device(place) = static_cast<T>(0) * dY;
} else {
int vec_size = platform::GetVectorizedSize<T>(grad_y.data<T>());
if (vec_size == 4 && size % 4 == 0) {
auto factor = static_cast<T>(1.0f / (1.0f - dropout_prob));
auto stream = dev_ctx.stream();
platform::GpuLaunchConfig config =
platform::GetGpuLaunchConfig1D(dev_ctx, size);
DropoutGradCUDAKernel<
T, uint8_t,
4><<<config.block_per_grid, config.thread_per_block, 0, stream>>>(
grad_y.data<T>(), mask.data<uint8_t>(), factor, size,
grad_x->data<T>());
} else {
dX.device(place) =
dY * M.cast<T>() / static_cast<T>(1.0f - dropout_prob);
}
}
} else {
dX.device(place) = dY * M.cast<T>();
}
}

} // namespace operators
} // namespace paddle
Loading