Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

fix save inference model conditional op #37579

Merged
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
44 changes: 19 additions & 25 deletions paddle/fluid/framework/prune.cc
Original file line number Diff line number Diff line change
Expand Up @@ -145,6 +145,23 @@ int FindMapByValue(const std::map<int, int>& m, int val) {
return -1;
}

// In other two cases,the op that has feed vars as output vars is dependent:
// 1. op has subblock, like while/for/ifelse/recurrent
// 2. op is in subblock
bool IsSubBlockDependent(const proto::OpDesc& op_desc,
const std::set<std::string>& feed_vars,
int parent_block_id) {
for (auto& var : op_desc.outputs()) {
for (auto& argu : var.arguments()) {
if ((HasSubBlock(op_desc) || parent_block_id != -1) &&
feed_vars.count(argu) != 0) {
return true;
}
}
}
return false;
}

// block_id is the idx of the current block in the input desc
// parent_block_id is the idx of the parent of the current block
// in the output desc, -1 means the current block is global block
Expand Down Expand Up @@ -210,7 +227,8 @@ void prune_impl(const proto::ProgramDesc& input, proto::ProgramDesc* output,
// }

if (IsTarget(op_desc) ||
(HasDependentOutputVar(op_desc, *dependent_vars) &&
((HasDependentOutputVar(op_desc, *dependent_vars) ||
(IsSubBlockDependent(op_desc, feed_var_names, parent_block_id))) &&
(GetOpRole(op_desc) & static_cast<int>(OpRole::kOptimize)) == 0)) {
// NOTE(zhiqiu): since optimize op takes the trainable parameters as
// inputs and output, it may introduce wrong dependency graph.
Expand All @@ -227,30 +245,6 @@ void prune_impl(const proto::ProgramDesc& input, proto::ProgramDesc* output,
should_run.push_back(true);
} else {
should_run.push_back(false);
// If the output of an op modifies feed vars, the op should not clip.
// For example, in the transformer structure, the third parameter returned
// by beam_search op is generally assigned to a feed var. Cutting the
// assign op will cause an error.
if (parent_block_id != -1) {
bool flag = false;
for (auto& var : op_desc.outputs()) {
for (auto& argu : var.arguments()) {
if (feed_var_names.count(argu)) {
flag = true;
}
}
}
if (flag) {
should_run.back() = true;

// If any op should run, then there inputs are dependent_vars
for (auto& var : op_desc.inputs()) {
for (auto& argu : var.arguments()) {
dependent_vars->insert(argu);
}
}
}
}
}
}

Expand Down
Original file line number Diff line number Diff line change
@@ -0,0 +1,148 @@
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function

import os
import unittest
import numpy as np

import paddle
import paddle.fluid as fluid
import paddle.nn.functional as F


def getModelOp(model_path):
model_bytes = paddle.static.load_from_file(model_path)
pg = paddle.static.deserialize_program(model_bytes)
main_block = pg.desc.block(0)
size = main_block.op_size()

result = set()
for i in range(0, size):
#print(main_block.op(i).type())
result.add(main_block.op(i).type())

return result


class WhileNet(paddle.nn.Layer):
def __init__(self):
super(WhileNet, self).__init__()

def forward(self, x):
y = paddle.rand(shape=[1, 3, 4, 4])

w1 = paddle.shape(y)[0]
w2 = paddle.shape(x)[0]

while w2 != w1:
x = F.avg_pool2d(x, kernel_size=3, padding=1, stride=2)
w2 = paddle.shape(x)[0]

return x + y


class ForNet(paddle.nn.Layer):
def __init__(self):
super(ForNet, self).__init__()

def forward(self, x):
y = paddle.randint(low=0, high=5, shape=[1], dtype='int32')
z = paddle.randint(low=0, high=5, shape=[1], dtype='int32')
for i in range(0, z):
x = x + i

return x + y


class IfElseNet(paddle.nn.Layer):
def __init__(self):
super(IfElseNet, self).__init__()

def forward(self, x):
y = paddle.to_tensor([5])
if x > y:
x = x + 1
else:
x = x - 1
return x


class TestConditionalOp(unittest.TestCase):
def test_while_op(self):
paddle.disable_static()
net = WhileNet()
net = paddle.jit.to_static(
net,
input_spec=[
paddle.static.InputSpec(
shape=[1, 3, 8, 8], dtype='float32')
])
paddle.jit.save(net, './while_net')

right_pdmodel = set([
"uniform_random", "shape", "slice", "not_equal", "while",
"elementwise_add"
])
paddle.enable_static()
pdmodel = getModelOp("while_net.pdmodel")
#print(len(right_pdmodel.difference(pdmodel)))
self.assertTrue(
len(right_pdmodel.difference(pdmodel)) == 0,
"The while op is pruned by mistake.")

def test_for_op(self):
paddle.disable_static()
net = ForNet()
net = paddle.jit.to_static(
net,
input_spec=[paddle.static.InputSpec(
shape=[1], dtype='int32')])
paddle.jit.save(net, './for_net')

right_pdmodel = set([
"randint", "fill_constant", "cast", "less_than", "while",
"elementwise_add"
])
paddle.enable_static()
pdmodel = getModelOp("for_net.pdmodel")
#print(len(right_pdmodel.difference(pdmodel)))
self.assertTrue(
len(right_pdmodel.difference(pdmodel)) == 0,
"The for op is pruned by mistake.")

def test_if_op(self):
paddle.disable_static()
net = IfElseNet()
net = paddle.jit.to_static(
net,
input_spec=[paddle.static.InputSpec(
shape=[1], dtype='int32')])
paddle.jit.save(net, './if_net')

right_pdmodel = set([
"assign_value", "greater_than", "cast", "conditional_block",
"logical_not", "select_input"
])
paddle.enable_static()
pdmodel = getModelOp("if_net.pdmodel")
#print(len(right_pdmodel.difference(pdmodel)))
self.assertTrue(
len(right_pdmodel.difference(pdmodel)) == 0,
"The if op is pruned by mistake.")


if __name__ == '__main__':
unittest.main()