Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Added performance tests for Eager Dygraph #1 #37638

Merged
merged 5 commits into from
Nov 28, 2021
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
324 changes: 324 additions & 0 deletions paddle/fluid/eager/tests/performance_tests/benchmark_utils.cc
Original file line number Diff line number Diff line change
@@ -0,0 +1,324 @@
// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/fluid/eager/tests/performance_tests/benchmark_utils.h"

#include <iostream>
#include <memory>
#include <set>
#include <string>
#include <vector>

// Eager
#include "paddle/fluid/eager/api/all.h"
#include "paddle/fluid/eager/autograd_meta.h"
#include "paddle/fluid/eager/backward.h"
#include "paddle/fluid/eager/tests/test_utils.h"
#include "paddle/fluid/eager/utils.h"

// Eager Generated
#include "paddle/fluid/eager/api/generated/fluid_generated/dygraph_forward_api.h"

// Fluid
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/imperative/basic_engine.h"
#include "paddle/fluid/imperative/tracer.h"
#include "paddle/fluid/memory/memcpy.h"

#include "paddle/fluid/eager/tests/benchmark/benchmark_utils.h"

#include "paddle/pten/core/kernel_registry.h"

static size_t max_num_benchmark_runs = 5000;

namespace egr {

/* --------------------- */
/* ---- Eager Scale ---- */
/* --------------------- */
void benchmark_eager_scale(const EagerTensor& tensor, bool accuracy_check) {
EagerTensor input_tensor = tensor;
float scale = 2.0;
float bias = 3.0;

size_t max_num_runs = accuracy_check ? 10 : max_num_benchmark_runs;
for (size_t i = 0; i < max_num_runs; i++) {
input_tensor =
egr::scale(input_tensor, scale, bias, true /*bias_after_scale*/,
true /*trace_backward*/);
}

std::vector<EagerTensor> target_tensors = {input_tensor};
RunBackward(target_tensors, {});

if (accuracy_check) {
// Examine Forward Grad (w.r.t max_num_runs = 10)
CompareTensorWithValue<float>(input_tensor, 8189.0);
// Examine Backward Grad (w.r.t max_num_runs = 10)
CompareGradTensorWithValue<float>(tensor, 1024.0);
}
}

/* ----------------------------------- */
/* ---- Eager Intermediate Matmul ---- */
/* ----------------------------------- */
void benchmark_eager_intermediate_matmul(const EagerTensor& X,
const EagerTensor& Y,
bool accuracy_check) {
EagerTensor input_tensor0 = X;

size_t max_num_runs = accuracy_check ? 2 : max_num_benchmark_runs;
for (size_t i = 0; i < max_num_runs; i++) {
input_tensor0 = matmul_v2_dygraph_function(
input_tensor0, Y, {{"trans_x", false}, {"trans_y", false}});
}

std::vector<EagerTensor> target_tensors = {input_tensor0};
RunBackward(target_tensors, {});

if (accuracy_check) {
// Examine Forward Grad (w.r.t max_num_runs = 2)
CompareVariableWithValue<float>(input_tensor0, 16);
// Examine Backward Grad (w.r.t max_num_runs = 2)
CompareGradVariableWithValue<float>(X, 16);
CompareGradVariableWithValue<float>(Y, 16);
}
}

/* -------------------------------- */
/* ---- Eager Intermediate MLP ---- */
/* -------------------------------- */
void benchmark_eager_intermediate_mlp(const EagerTensor& X,
const std::vector<EagerTensor>& Ws,
const std::vector<EagerTensor>& Bs,
bool accuracy_check) {
EagerTensor input0 = X;

for (size_t i = 0; i < MLP_NUM_LINEAR; i++) {
EagerTensor Out = matmul_v2_dygraph_function(
input0, Ws[i], {{"trans_x", false}, {"trans_y", false}});

input0 = elementwise_add_dygraph_function(Out, Bs[i], {});
}

EagerTensor Out = reduce_sum_dygraph_function(input0, {{"reduce_all", true}});

std::vector<EagerTensor> target_tensors = {Out};
RunBackward(target_tensors, {});

if (accuracy_check) {
std::unordered_map<std::string, float> result =
compute_mlp_expected_results();

// Examine Forward Grad (w.r.t max_num_runs = 2)
CompareVariableWithValue<float>(Out, result["Out"]);

// Examine Backward Grad (w.r.t max_num_runs = 2)
CompareGradVariableWithValue<float>(X, result["GradX"]);
CompareGradVariableWithValue<float>(Ws[0], result["GradW"]);
}
}

} // namespace egr

namespace paddle {
namespace imperative {

static void FluidCheckTensorValue(const std::shared_ptr<imperative::VarBase>& X,
const paddle::platform::Place& place,
float value) {
auto* tensor = X->MutableVar()->GetMutable<framework::LoDTensor>();
float* t_ptr = tensor->mutable_data<float>(place);
std::vector<float> host_data(tensor->numel());
if (place == paddle::platform::CUDAPlace()) {
paddle::platform::DeviceContextPool& pool =
paddle::platform::DeviceContextPool::Instance();
auto* dev_ctx =
dynamic_cast<paddle::platform::CUDADeviceContext*>(pool.Get(place));
auto stream = dev_ctx->stream();

paddle::memory::Copy(paddle::platform::CPUPlace(), host_data.data(),
paddle::platform::CUDAPlace(), t_ptr,
sizeof(float) * tensor->numel(), stream);
t_ptr = host_data.data();
}
VLOG(6) << "Tensor Value: " << t_ptr[0] << ", Expected Value: " << value;
PADDLE_ENFORCE(
t_ptr[0] == value,
paddle::platform::errors::Fatal(
"Detected numerical Error, Expected %f but got %f", value, t_ptr[0]));
}

static void FluidCheckGradTensorValue(
const std::shared_ptr<imperative::VarBase>& X,
const paddle::platform::Place& place, float value) {
auto* grad_tensor = X->MutableGradVar()->GetMutable<framework::LoDTensor>();
float* g_ptr = grad_tensor->mutable_data<float>(place);
std::vector<float> g_host_data(grad_tensor->numel());
if (place == paddle::platform::CUDAPlace()) {
paddle::platform::DeviceContextPool& pool =
paddle::platform::DeviceContextPool::Instance();
auto* dev_ctx =
dynamic_cast<paddle::platform::CUDADeviceContext*>(pool.Get(place));
auto stream = dev_ctx->stream();

paddle::memory::Copy(paddle::platform::CPUPlace(), g_host_data.data(),
paddle::platform::CUDAPlace(), g_ptr,
sizeof(float) * grad_tensor->numel(), stream);
g_ptr = g_host_data.data();
}
VLOG(6) << "Tensor Value: " << g_ptr[0] << ", Expected Value: " << value;
PADDLE_ENFORCE(
g_ptr[0] == value,
paddle::platform::errors::Fatal(
"Detected numerical Error, Expected %f but got %f", value, g_ptr[0]));
}

/* --------------------- */
/* ---- Fluid Scale ---- */
/* --------------------- */
// TODO(jiabin): Change this and remove nolint
void benchmark_fluid_scale(const std::shared_ptr<imperative::VarBase>& X,
const paddle::platform::Place& place,
bool accuracy_check) {
imperative::Tracer tracer;
framework::AttributeMap attrs;

attrs["use_mkldnn"] = false;
attrs["scale"] = 2;
attrs["bias"] = 3;
attrs["bias_after_scale"] = true;

std::shared_ptr<imperative::VarBase> tmp_out = X;

size_t max_num_runs = accuracy_check ? 10 : max_num_benchmark_runs;
for (size_t i = 0; i < max_num_runs; i++) {
imperative::NameVarBaseMap ins = {{"X", {tmp_out}}};
imperative::NameVarBaseMap outs = {
{"Out",
{std::shared_ptr<imperative::VarBase>(
new imperative::VarBase(true, "Out"))}}};

tracer.TraceOp("scale", ins, outs, attrs, place, true);

tmp_out = outs["Out"][0];
}

auto* engine = tracer.GetEngine();
std::vector<std::shared_ptr<imperative::VarBase>> grad_tensors{nullptr};
engine->Init({tmp_out}, grad_tensors, false /*retain_graph*/);
engine->Execute();

if (accuracy_check) {
FluidCheckTensorValue(tmp_out, place, 8189.0);
FluidCheckGradTensorValue(X, place, 1024.0);
}
}

/* ---------------------- */
/* ---- Fluid Matmul ---- */
/* ---------------------- */
void benchmark_fluid_matmul(const std::shared_ptr<imperative::VarBase>& X,
const std::shared_ptr<imperative::VarBase>& Y,
const paddle::platform::Place& place,
bool accuracy_check) {
imperative::Tracer tracer;

std::shared_ptr<imperative::VarBase> tmp_out = X;

size_t max_num_runs = accuracy_check ? 2 : max_num_benchmark_runs;
for (size_t i = 0; i < max_num_runs; i++) {
framework::AttributeMap attrs;
imperative::NameVarBaseMap ins = {{"X", {tmp_out}}, {"Y", {Y}}};
imperative::NameVarBaseMap outs = {
{"Out",
{std::shared_ptr<imperative::VarBase>(
new imperative::VarBase(true, "Out"))}}};

tracer.TraceOp("matmul_v2", ins, outs, attrs, place, true);

tmp_out = outs["Out"][0];
}

auto* engine = tracer.GetEngine();
std::vector<std::shared_ptr<imperative::VarBase>> grad_tensors{nullptr};
engine->Init({tmp_out}, grad_tensors, false /*retain_graph*/);
engine->Execute();

if (accuracy_check) {
FluidCheckTensorValue(tmp_out, place, 16);
FluidCheckGradTensorValue(X, place, 16);
FluidCheckGradTensorValue(Y, place, 16);
}
}

/* ------------------- */
/* ---- Fluid MLP ---- */
/* ------------------- */
void benchmark_fluid_mlp(
const std::shared_ptr<imperative::VarBase>& X,
const std::vector<std::shared_ptr<imperative::VarBase>>& Ws,
const std::vector<std::shared_ptr<imperative::VarBase>>& Bs,
const paddle::platform::Place& place, bool accuracy_check) {
imperative::Tracer tracer;

imperative::NameVarBaseMap ins;
imperative::NameVarBaseMap outs;
framework::AttributeMap attrs;
std::shared_ptr<imperative::VarBase> input0 = X;
for (size_t i = 0; i < MLP_NUM_LINEAR; i++) {
// Matmul0
ins = {{"X", {input0}}, {"Y", {Ws[0]}}};
outs = {{"Out",
{std::shared_ptr<imperative::VarBase>(
new imperative::VarBase(true, "Out"))}}};

tracer.TraceOp("matmul_v2", ins, outs, attrs, place, true);

// EW-Add0
ins = {{"X", outs["Out"]}, {"Y", {Bs[i]}}};
outs = {{"Out",
{std::shared_ptr<imperative::VarBase>(
new imperative::VarBase(true, "Out"))}}};

tracer.TraceOp("elementwise_add", ins, outs, attrs, place, true);
input0 = outs["Out"][0];
}

// ReduceSum
ins = {{"X", {input0}}};
outs = {{"Out",
{std::shared_ptr<imperative::VarBase>(
new imperative::VarBase(true, "Out"))}}};
attrs = {{"reduce_all", true}};

tracer.TraceOp("reduce_sum", ins, outs, attrs, place, true);

auto* engine = tracer.GetEngine();
std::vector<std::shared_ptr<imperative::VarBase>> grad_tensors{nullptr};
engine->Init(outs["Out"], grad_tensors, false /*retain_graph*/);
engine->Execute();

if (accuracy_check) {
std::unordered_map<std::string, float> result =
egr::compute_mlp_expected_results();

FluidCheckTensorValue(outs["Out"][0], place, result["Out"]);
FluidCheckGradTensorValue(X, place, result["GradX"]);
FluidCheckGradTensorValue(Ws[0], place, result["GradW"]);
}
}

} // namespace imperative
} // namespace paddle
Loading