Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[cherry pick] cherry pick from remove paddle.where #38849

Merged
merged 1 commit into from
Jan 11, 2022
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
34 changes: 13 additions & 21 deletions python/paddle/nn/functional/loss.py
Original file line number Diff line number Diff line change
Expand Up @@ -1650,25 +1650,16 @@ def cross_entropy(input,
label = paddle.unsqueeze(label, axis=axis)
if in_dygraph_mode():
if soft_label == False:
valid_label = paddle.where(label == ignore_index,
paddle.zeros_like(label), label)
# TODO: Temporarily use paddle.nonzero instead of paddle.max
# to detect and find out possible illegal label values
if len(paddle.nonzero(valid_label < 0)) > 0:
invalid_label = paddle.gather_nd(
valid_label, paddle.nonzero(valid_label < 0))
raise ValueError(
"Target({}) is out of class_dimension's lower bound({})".
format(invalid_label[0], 0))
# TODO: Temporarily use paddle.nonzero instead of paddle.max
# to detect and find out possible illegal label values
if len(paddle.nonzero(valid_label >= input.shape[axis])) > 0:
invalid_label = paddle.gather_nd(
valid_label,
paddle.nonzero(valid_label >= input.shape[axis]))
raise ValueError(
"Target({}) is out of class_dimension's upper bound({})".
format(invalid_label[0], input.shape[axis] - 1))
valid_label = paddle.cast(
label != ignore_index, dtype=label.dtype) * label
label_min = paddle.min(valid_label)
label_max = paddle.max(valid_label)
if label_min < 0:
raise ValueError("label should not out of bound, but got{}".
format(label_min))
if label_max >= input.shape[axis]:
raise ValueError("label should not out of bound, but got{}".
format(label_max))

_, out = _C_ops.softmax_with_cross_entropy(
input, label, 'soft_label', soft_label, 'ignore_index',
Expand Down Expand Up @@ -1817,8 +1808,9 @@ def cross_entropy(input,
"when weight is provided"\
.format(input.shape[axis], weight.shape[-1]))

valid_label = paddle.where(label == ignore_index,
paddle.zeros_like(label), label)
valid_label = paddle.multiply(
paddle.cast(
label != ignore_index, dtype=label.dtype), label)
ignore_weight_mask = paddle.cast((label != ignore_index),
input.dtype)
if ignore_weight_mask.ndim > 1 and ignore_weight_mask.shape[
Expand Down