Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

add flatten_contiguous_range OpConvert for Paddle-TRT #38922

Merged
merged 7 commits into from
Jan 14, 2022
Merged
Show file tree
Hide file tree
Changes from 2 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Original file line number Diff line number Diff line change
Expand Up @@ -81,6 +81,15 @@ void analysis::TensorRtSubgraphPass::ApplyImpl(
framework::ir::GraphSafeRemoveNodes(graph, nodes2remove);
graph->Set(framework::ir::kRepetitiveParamAttr,
new std::vector<std::string>(repetitive_params));
for (auto *node : graph->Nodes()) {
if (node->IsOp() && node->Op() && node->Op()->Type() != "tensorrt_engine" &&
node->Op()->Type() != "feed" && node->Op()->Type() != "fetch") {
std::string output_names = "";
for (auto *x : node->outputs) output_names += x->Name() + " ";
LOG(WARNING) << node->Op()->Type().c_str() << "(" << output_names << ")"
<< " op is not in TRT Engine";
}
}
heliqi marked this conversation as resolved.
Show resolved Hide resolved
}

std::string GenerateEngineKey(const std::set<std::string> &engine_inputs,
Expand Down
1 change: 1 addition & 0 deletions paddle/fluid/inference/api/analysis_predictor.cc
Original file line number Diff line number Diff line change
Expand Up @@ -1415,6 +1415,7 @@ USE_TRT_CONVERTER(elementwise_min_tensor);
USE_TRT_CONVERTER(elementwise_pow_tensor);
USE_TRT_CONVERTER(transpose);
USE_TRT_CONVERTER(flatten);
USE_TRT_CONVERTER(flatten_contiguous_range);
USE_TRT_CONVERTER(matmul);
USE_TRT_CONVERTER(conv2d);
USE_TRT_CONVERTER(relu);
Expand Down
2 changes: 1 addition & 1 deletion paddle/fluid/inference/tensorrt/convert/CMakeLists.txt
Original file line number Diff line number Diff line change
Expand Up @@ -3,7 +3,7 @@ nv_library(tensorrt_converter
SRCS matmul_op.cc conv2d_op.cc fc_op.cc pool2d_op.cc elementwise_op.cc
batch_norm_op.cc activation_op.cc softmax_op.cc concat_op.cc dropout_op.cc group_norm_op.cc
pad_op.cc split_op.cc prelu_op.cc leaky_relu_op.cc gelu_op.cc layer_norm_op.cc multihead_matmul_op.cc
shuffle_channel_op.cc swish_op.cc instance_norm_op.cc stack_op.cc transpose_op.cc flatten_op.cc
shuffle_channel_op.cc swish_op.cc instance_norm_op.cc stack_op.cc transpose_op.cc flatten_op.cc flatten_contiguous_range_op.cc
emb_eltwise_layernorm.cc skip_layernorm.cc scale_op.cc slice_op.cc hard_sigmoid_op.cc hard_swish_op.cc clip_op.cc
gather_op.cc
anchor_generator_op.cc
Expand Down
136 changes: 136 additions & 0 deletions paddle/fluid/inference/tensorrt/convert/flatten_contiguous_range_op.cc
Original file line number Diff line number Diff line change
@@ -0,0 +1,136 @@
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/inference/tensorrt/convert/op_converter.h"

namespace paddle {
namespace framework {
class Scope;
namespace proto {
class OpDesc;
} // namespace proto
} // namespace framework
} // namespace paddle

namespace paddle {
namespace inference {
namespace tensorrt {
/*
* flatten_contiguous_range trt converter
*/
class FlattenContiguousRangeOpConverter : public OpConverter {
public:
void operator()(const framework::proto::OpDesc& op,
const framework::Scope& scope, bool test_mode) override {
framework::OpDesc op_desc(op, nullptr);
// Declare inputs
auto* input = engine_->GetITensor(op_desc.Input("X")[0]);
int dims = input->getDimensions().nbDims;
int start_axis = BOOST_GET_CONST(int, op_desc.GetAttr("start_axis"));
int stop_axis = BOOST_GET_CONST(int, op_desc.GetAttr("stop_axis"));

nvinfer1::IShuffleLayer* layer = nullptr;
if (!engine_->with_dynamic_shape()) {
if (start_axis < 0) start_axis += dims + 1;
if (stop_axis < 0) stop_axis += dims + 1;
int dim_prod = 1;
nvinfer1::Dims flatten_dim;
flatten_dim.nbDims = dims - (stop_axis - start_axis);
for (int i = 0, j = 0; i < dims; ++i) {
if (start_axis <= i + 1 && i + 1 <= stop_axis) {
int dim_i = input->getDimensions().d[i];
PADDLE_ENFORCE_GT(dim_i, 0, platform::errors::InvalidArgument(
"flatten_contiguous_range input dim "
"should be > 0, but got %d.",
dim_i));
dim_prod *= dim_i;
if (i + 1 == stop_axis) {
flatten_dim.d[j++] = dim_prod;
}
} else {
flatten_dim.d[j++] = input->getDimensions().d[i];
}
}
layer = TRT_ENGINE_ADD_LAYER(engine_, Shuffle, *input);
layer->setReshapeDimensions(flatten_dim);
} else {
if (start_axis < 0) start_axis += dims;
if (stop_axis < 0) stop_axis += dims;
auto* shape_layer = TRT_ENGINE_ADD_LAYER(engine_, Shape, *input);
auto* shape_layer_itensor = shape_layer->getOutput(0);

nvinfer1::Dims start_dim, size_dim, stride_dim;
start_dim.nbDims = 1;
size_dim.nbDims = 1;
stride_dim.nbDims = 1;
start_dim.d[0] = start_axis;
size_dim.d[0] = stop_axis - start_axis + 1;
stride_dim.d[0] = 1;
auto* slice_layer =
TRT_ENGINE_ADD_LAYER(engine_, Slice, *shape_layer_itensor, start_dim,
size_dim, stride_dim);
uint32_t reduce_dim = 1;
auto* reduce_prod_layer = TRT_ENGINE_ADD_LAYER(
engine_, Reduce, *(slice_layer->getOutput(0)),
nvinfer1::ReduceOperation::kPROD, reduce_dim, true);

nvinfer1::ITensor* input_shape = nullptr;
if (start_axis == 0 && stop_axis == dims - 1) {
input_shape = reduce_prod_layer->getOutput(0);
} else {
std::vector<nvinfer1::ITensor*> itensors;
if (start_axis > 0) {
nvinfer1::Dims left_start_dim, left_size_dim, left_stride_dim;
left_start_dim.nbDims = 1;
left_size_dim.nbDims = 1;
left_stride_dim.nbDims = 1;
left_start_dim.d[0] = 0;
left_size_dim.d[0] = start_axis;
left_stride_dim.d[0] = 1;
auto* slice_layer_left = TRT_ENGINE_ADD_LAYER(
engine_, Slice, *shape_layer_itensor, left_start_dim,
left_size_dim, left_stride_dim);
itensors.push_back(slice_layer_left->getOutput(0));
}
itensors.push_back(reduce_prod_layer->getOutput(0));
if (stop_axis < dims - 1) {
nvinfer1::Dims right_start_dim, right_size_dim, right_stride_dim;
right_start_dim.nbDims = 1;
right_size_dim.nbDims = 1;
right_stride_dim.nbDims = 1;
right_start_dim.d[0] = stop_axis + 1;
right_size_dim.d[0] = dims - stop_axis - 1;
right_stride_dim.d[0] = 1;
auto* slice_layer_right = TRT_ENGINE_ADD_LAYER(
engine_, Slice, *shape_layer_itensor, right_start_dim,
right_size_dim, right_stride_dim);
itensors.push_back(slice_layer_right->getOutput(0));
}
auto* concat_layer = TRT_ENGINE_ADD_LAYER(
engine_, Concatenation, itensors.data(), itensors.size());
concat_layer->setAxis(0);
input_shape = concat_layer->getOutput(0);
}
layer = TRT_ENGINE_ADD_LAYER(engine_, Shuffle, *input);
layer->setInput(1, *input_shape);
}
auto output_name = op_desc.Output("Out")[0];
RreplenishLayerAndOutput(layer, "flatten_contiguous_range", {output_name},
test_mode);
}
};

} // namespace tensorrt
} // namespace inference
} // namespace paddle

REGISTER_TRT_OP_CONVERTER(flatten_contiguous_range,
FlattenContiguousRangeOpConverter);
32 changes: 32 additions & 0 deletions paddle/fluid/inference/tensorrt/op_teller.cc
Original file line number Diff line number Diff line change
Expand Up @@ -158,6 +158,7 @@ struct SimpleOpTypeSetTeller : public Teller {
"transpose",
"flatten2",
"flatten",
"flatten_contiguous_range",
"gather",
"gather_nd",
"yolo_box",
Expand Down Expand Up @@ -531,6 +532,37 @@ bool OpTeller::Tell(const framework::ir::Node* node, bool use_no_calib_int8,
if (axis != 1) return false;
}
}
if (op_type == "flatten_contiguous_range") {
if (!with_dynamic_shape) {
int start_axis = BOOST_GET_CONST(int, desc.GetAttr("start_axis"));
int stop_axis = BOOST_GET_CONST(int, desc.GetAttr("stop_axis"));
auto x_var_name = desc.Input("X")[0];
auto* block = desc.Block();
if (block == nullptr) {
VLOG(3) << "The block desc is nullptr, we can't continue to analyze. "
"Developers need to check whether block_desc is passed in "
"the pass.";
return false;
}
auto* x_var_desc = block->FindVar(x_var_name);
const auto x_shape = x_var_desc->GetShape();
int dims = x_shape.size();
if (start_axis < 0) start_axis += dims;
if (start_axis == 0) {
VLOG(3) << "TRT flatten_contiguous_range not support the "
"batch-dimension being changed";
return false;
}
if (stop_axis < 0) stop_axis += dims;
for (int i = start_axis; i <= stop_axis; ++i) {
if (x_shape[i] < 0) {
VLOG(3) << "On TRT static shape,flatten_contiguous_range input dim "
"should be > 0";
return false;
}
}
}
}

if (op_type == "gather") {
auto gather_inputs = desc.Inputs();
Expand Down
Original file line number Diff line number Diff line change
@@ -0,0 +1,111 @@
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from trt_layer_auto_scan_test import TrtLayerAutoScanTest, SkipReasons
from program_config import TensorConfig, ProgramConfig
import unittest
import numpy as np
import paddle.inference as paddle_infer
from functools import partial
from typing import Optional, List, Callable, Dict, Any, Set


class TrtConvertFlattenContiguousRangeTest(TrtLayerAutoScanTest):
def is_program_valid(self, program_config: ProgramConfig) -> bool:
return True

def sample_program_configs(self):
def generate_input(batch):
return np.random.random([2, batch, 4, 8, 3]).astype(np.float32)

for batch in [1, 2, 4]:
for start_axis in range(5):
for stop_axis in range(start_axis, 5):
type = "flatten_contiguous_range"
op_outputs = {
"Out": ["output_data"],
"XShape": ["xshape_data"]
}
ops_config = [{
"op_type": type,
"op_inputs": {
"X": ["input_data"]
},
"op_outputs": op_outputs,
"op_attrs": {
"start_axis": start_axis,
"stop_axis": stop_axis,
}
}]
ops = self.generate_op_config(ops_config)

program_config = ProgramConfig(
ops=ops,
weights={},
inputs={
"input_data": TensorConfig(
data_gen=partial(generate_input, batch))
},
outputs=["output_data"])
yield program_config

def sample_predictor_configs(
self, program_config) -> (paddle_infer.Config, List[int], float):
def generate_dynamic_shape(attrs):
self.dynamic_shape.min_input_shape = {"input_data": [2, 1, 4, 8, 3]}
self.dynamic_shape.max_input_shape = {"input_data": [2, 4, 4, 8, 3]}
self.dynamic_shape.opt_input_shape = {"input_data": [2, 2, 4, 8, 3]}

def clear_dynamic_shape():
self.dynamic_shape.max_input_shape = {}
self.dynamic_shape.min_input_shape = {}
self.dynamic_shape.opt_input_shape = {}

def generate_trt_nodes_num(attrs, dynamic_shape):
if dynamic_shape:
return 1, 2
else:
if attrs[0]['start_axis'] == 0:
return 0, 3
else:
return 1, 2

attrs = [
program_config.ops[i].attrs
for i in range(len(program_config.ops))
]

# for static_shape
clear_dynamic_shape()
yield self.create_inference_config(), generate_trt_nodes_num(
attrs, False), 1e-5
self.trt_param.precision = paddle_infer.PrecisionType.Half
yield self.create_inference_config(), generate_trt_nodes_num(
attrs, False), 1e-5

# for dynamic_shape
generate_dynamic_shape(attrs)
self.trt_param.precision = paddle_infer.PrecisionType.Float32
yield self.create_inference_config(), generate_trt_nodes_num(attrs,
True), 1e-5
self.trt_param.precision = paddle_infer.PrecisionType.Half
yield self.create_inference_config(), generate_trt_nodes_num(attrs,
True), 1e-5

def test(self):
self.run_test()


if __name__ == "__main__":
unittest.main()