-
Notifications
You must be signed in to change notification settings - Fork 5.7k
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Add expand operator #4061
Merged
Merged
Add expand operator #4061
Changes from all commits
Commits
Show all changes
9 commits
Select commit
Hold shift + click to select a range
ad5e7cc
Implemented by boost preprocessor.
pkuyym c1215dd
Merge branch 'develop' of https://github.com/PaddlePaddle/Paddle into…
pkuyym f2d596d
Fix typos.
pkuyym 4520afc
Consider corner case.
pkuyym 9367fa1
Add more test cases and refine doc.
pkuyym 7be390a
Merge branch 'develop' of https://github.com/PaddlePaddle/Paddle into…
pkuyym 0d9ba3d
Adapt to new interface.
pkuyym d04c853
Refine .cc and .h, more unit test more readable.
pkuyym d7e7a1d
Add using case.
pkuyym File filter
Filter by extension
Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,136 @@ | ||
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. | ||
|
||
Licensed under the Apache License, Version 2.0 (the "License"); | ||
you may not use this file except in compliance with the License. | ||
You may obtain a copy of the License at | ||
|
||
http://www.apache.org/licenses/LICENSE-2.0 | ||
|
||
Unless required by applicable law or agreed to in writing, software | ||
distributed under the License is distributed on an "AS IS" BASIS, | ||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
See the License for the specific language governing permissions and | ||
limitations under the License. */ | ||
|
||
#include "paddle/operators/expand_op.h" | ||
|
||
namespace paddle { | ||
namespace operators { | ||
|
||
using framework::Tensor; | ||
|
||
class ExpandOp : public framework::OperatorWithKernel { | ||
public: | ||
using framework::OperatorWithKernel::OperatorWithKernel; | ||
|
||
protected: | ||
void InferShape(framework::InferShapeContext* ctx) const override { | ||
PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) should not be null."); | ||
PADDLE_ENFORCE(ctx->HasOutput("Out"), "Output(Out) should not be null."); | ||
|
||
std::vector<int> expand_times = | ||
ctx->Attrs().Get<std::vector<int>>("expand_times"); | ||
auto x_dims = ctx->GetInputDim("X"); | ||
|
||
PADDLE_ENFORCE_EQ(static_cast<size_t>(x_dims.size()), expand_times.size(), | ||
"The number of Attr(expand_times)'s value must be equal " | ||
"to the rank of Input(X)."); | ||
PADDLE_ENFORCE_LE(x_dims.size(), 6, | ||
"The rank of Input(X) must not be greater than 6."); | ||
|
||
std::vector<int64_t> out_shape(x_dims.size()); | ||
for (size_t i = 0; i < expand_times.size(); ++i) { | ||
PADDLE_ENFORCE_GE(expand_times[i], 1, | ||
"Each value of Attr(expand_times) should not be " | ||
"less than 1."); | ||
out_shape[i] = x_dims[i] * expand_times[i]; | ||
} | ||
|
||
ctx->SetOutputDim("Out", framework::make_ddim(out_shape)); | ||
if (out_shape[0] == x_dims[0]) { | ||
ctx->ShareLoD("X", "Out"); | ||
} | ||
} | ||
}; | ||
|
||
class ExpandOpMaker : public framework::OpProtoAndCheckerMaker { | ||
public: | ||
ExpandOpMaker(framework::OpProto* proto, framework::OpAttrChecker* op_checker) | ||
: OpProtoAndCheckerMaker(proto, op_checker) { | ||
AddInput("X", | ||
"(Tensor, default Tensor<float>) A tensor with rank in [1, 6]." | ||
"X is the input tensor to be expanded."); | ||
AddOutput("Out", | ||
"(Tensor, default Tensor<float>) A tensor with rank in [1, 6]." | ||
"The rank of Output(Out) is same as Input(X) except that each " | ||
"dimension size of Output(Out) is equal to corresponding " | ||
"dimension size of Input(X) multiplying corresponding value of " | ||
"Attr(expand_times)."); | ||
AddAttr<std::vector<int>>("expand_times", | ||
"Expand times number for each dimension."); | ||
AddComment(R"DOC( | ||
Expand operator tiles the input by given times number. You should set times | ||
number for each dimension by providing attribute 'expand_times'. The rank of X | ||
should be in [1, 6]. Please notice that size of 'expand_times' must be same with | ||
X's rank. Following is a using case: | ||
|
||
Input(X) is a 3-D tensor with shape [2, 3, 1]: | ||
|
||
[ | ||
[[1], [2], [3]], | ||
[[4], [5], [6]] | ||
] | ||
|
||
Attr(expand_times): [1, 2, 2] | ||
|
||
Output(Out) is a 3-D tensor with shape [2, 6, 2]: | ||
|
||
[ | ||
[[1, 1], [2, 2], [3, 3], [1, 1], [2, 2], [3, 3]], | ||
[[4, 4], [5, 5], [6, 6], [4, 4], [5, 5], [6, 6]] | ||
] | ||
|
||
)DOC"); | ||
} | ||
}; | ||
|
||
class ExpandGradOp : public framework::OperatorWithKernel { | ||
public: | ||
using framework::OperatorWithKernel::OperatorWithKernel; | ||
|
||
protected: | ||
void InferShape(framework::InferShapeContext* ctx) const override { | ||
PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) should not be null."); | ||
PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("Out")), | ||
"Input(Out@GRAD) should not be null."); | ||
|
||
auto x_dims = ctx->GetInputDim("X"); | ||
std::vector<int> expand_times = | ||
ctx->Attrs().Get<std::vector<int>>("expand_times"); | ||
auto out_dims = ctx->GetInputDim(framework::GradVarName("Out")); | ||
|
||
for (size_t i = 0; i < expand_times.size(); ++i) { | ||
PADDLE_ENFORCE_EQ(x_dims[i] * expand_times[i], out_dims[i], | ||
"Each dimension size of Input(Out@GRAD) should be " | ||
"equal to multiplication of crroresponding dimension " | ||
"size of Input(X) and Attr(expand_times) value."); | ||
} | ||
|
||
auto x_grad_name = framework::GradVarName("X"); | ||
|
||
if (ctx->HasOutput(x_grad_name)) { | ||
ctx->SetOutputDim(x_grad_name, x_dims); | ||
} | ||
} | ||
}; | ||
|
||
} // namespace operators | ||
} // namespace paddle | ||
|
||
namespace ops = paddle::operators; | ||
REGISTER_OP(expand, ops::ExpandOp, ops::ExpandOpMaker, expand_grad, | ||
ops::ExpandGradOp); | ||
REGISTER_OP_CPU_KERNEL(expand, | ||
ops::ExpandKernel<paddle::platform::CPUPlace, float>); | ||
REGISTER_OP_CPU_KERNEL( | ||
expand_grad, ops::ExpandGradKernel<paddle::platform::CPUPlace, float>); |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,23 @@ | ||
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. | ||
|
||
Licensed under the Apache License, Version 2.0 (the "License"); | ||
you may not use this file except in compliance with the License. | ||
You may obtain a copy of the License at | ||
|
||
http://www.apache.org/licenses/LICENSE-2.0 | ||
|
||
Unless required by applicable law or agreed to in writing, software | ||
distributed under the License is distributed on an "AS IS" BASIS, | ||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
See the License for the specific language governing permissions and | ||
limitations under the License. */ | ||
|
||
#define EIGEN_USE_GPU | ||
|
||
#include "paddle/operators/expand_op.h" | ||
|
||
namespace ops = paddle::operators; | ||
REGISTER_OP_GPU_KERNEL(expand, | ||
ops::ExpandKernel<paddle::platform::GPUPlace, float>); | ||
REGISTER_OP_GPU_KERNEL( | ||
expand_grad, ops::ExpandGradKernel<paddle::platform::GPUPlace, float>); |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,172 @@ | ||
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. | ||
|
||
Licensed under the Apache License, Version 2.0 (the "License"); | ||
You may not use this file except in compliance with the License. | ||
You may obtain a copy of the License at | ||
|
||
http://www.apache.org/licenses/LICENSE-2.0 | ||
|
||
Unless required by applicable law or agreed to in writing, software | ||
distributed under the License is distributed on an "AS IS" BASIS, | ||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
See the License for the specific language governing permissions and | ||
limitations under the License. */ | ||
|
||
#pragma once | ||
|
||
#include <boost/preprocessor/arithmetic/div.hpp> | ||
#include <boost/preprocessor/arithmetic/mod.hpp> | ||
#include <boost/preprocessor/comparison/greater.hpp> | ||
#include <boost/preprocessor/comparison/greater_equal.hpp> | ||
#include <boost/preprocessor/control/if.hpp> | ||
#include <boost/preprocessor/repetition/repeat.hpp> | ||
#include <iostream> | ||
#include "paddle/framework/eigen.h" | ||
#include "paddle/framework/op_registry.h" | ||
#include "paddle/framework/operator.h" | ||
|
||
#define MAX_RANK_SUPPORTED 6 | ||
|
||
#define EXPAND_TEMPLATE(z, n, data) \ | ||
case n + 1: { \ | ||
Expand<n + 1>(context); \ | ||
break; \ | ||
} | ||
#define REP_EXPAND_TEMPLATE(n) BOOST_PP_REPEAT(n, EXPAND_TEMPLATE, ~) | ||
#define COND(n) \ | ||
BOOST_PP_GREATER_EQUAL(BOOST_PP_DIV(n, MAX_RANK_SUPPORTED), \ | ||
BOOST_PP_MOD(n, MAX_RANK_SUPPORTED)) | ||
#define EXPAND_GRAD_CASE(n) \ | ||
case n: { \ | ||
ExpandBackward<n>(context, reshape_dims_vec, reduce_dims_vec); \ | ||
break; \ | ||
} | ||
#define EXPAND_GRAD_TEMPLATE(z, n, data) \ | ||
BOOST_PP_IF(COND(n), EXPAND_GRAD_CASE(n), ) | ||
#define REP_EXPAND_GRAD_TEMPLATE(n) BOOST_PP_REPEAT(n, EXPAND_GRAD_TEMPLATE, ~) | ||
|
||
namespace paddle { | ||
namespace operators { | ||
|
||
using Tensor = framework::Tensor; | ||
template <typename T, int MajorType = Eigen::RowMajor, | ||
typename IndexType = Eigen::DenseIndex> | ||
using EigenVector = framework::EigenVector<T, MajorType, IndexType>; | ||
template <typename T, size_t D, int MajorType = Eigen::RowMajor, | ||
typename IndexType = Eigen::DenseIndex> | ||
using EigenTensor = framework::EigenTensor<T, D, MajorType, IndexType>; | ||
|
||
template <typename Place, typename T> | ||
class ExpandKernel : public framework::OpKernel<T> { | ||
public: | ||
void Compute(const framework::ExecutionContext& context) const override { | ||
auto rank = context.Input<Tensor>("X")->dims().size(); | ||
switch (rank) { | ||
REP_EXPAND_TEMPLATE(MAX_RANK_SUPPORTED) | ||
default: | ||
PADDLE_ENFORCE(false, | ||
"Only support tensor with rank being between 1 and 6."); | ||
} | ||
} | ||
|
||
protected: | ||
template <int Rank> | ||
void Expand(const framework::ExecutionContext& context) const { | ||
auto* in0 = context.Input<Tensor>("X"); | ||
auto& expand_times = context.Attr<std::vector<int>>("expand_times"); | ||
auto* out0 = context.Output<Tensor>("Out"); | ||
Eigen::DSizes<int, Rank> bcast_dims; | ||
auto x_dims = in0->dims(); | ||
for (size_t i = 0; i < expand_times.size(); ++i) { | ||
bcast_dims[i] = expand_times[i]; | ||
} | ||
auto x = EigenTensor<T, Rank>::From(*in0); | ||
out0->mutable_data<T>(context.GetPlace()); | ||
auto y = EigenTensor<T, Rank>::From(*out0); | ||
auto place = context.GetEigenDevice<Place>(); | ||
y.device(place) = x.broadcast(bcast_dims); | ||
} | ||
}; | ||
|
||
template <typename Place, typename T> | ||
class ExpandGradKernel : public framework::OpKernel<T> { | ||
public: | ||
void Compute(const framework::ExecutionContext& context) const override { | ||
auto* in0 = context.Input<Tensor>("X"); | ||
auto& expand_times = context.Attr<std::vector<int>>("expand_times"); | ||
auto x_dims = in0->dims(); | ||
// 1. reshape_dims_vec is the broadcast parameter. For each dimension i, | ||
// if expand_times[i] > 1 and x_dims[i] > 1, i will be splitted to two | ||
// dimensions [expand_times[i], x_dims[i]]. | ||
// 2. reduce_dims_vec is the dimension parameter to compute gradients. For | ||
// each dimension expanded, the gradients should be summed to original | ||
// size. | ||
std::vector<int> reshape_dims_vec; | ||
std::vector<int> reduce_dims_vec; | ||
for (size_t i = 0; i < expand_times.size(); ++i) { | ||
if (expand_times[i] == 1) { | ||
reshape_dims_vec.push_back(x_dims[i]); | ||
} else { | ||
if (x_dims[i] == 1) { | ||
reduce_dims_vec.push_back(reshape_dims_vec.size()); | ||
reshape_dims_vec.push_back(expand_times[i]); | ||
} else { | ||
reduce_dims_vec.push_back(reshape_dims_vec.size()); | ||
reshape_dims_vec.push_back(expand_times[i]); | ||
reshape_dims_vec.push_back(x_dims[i]); | ||
} | ||
} | ||
} | ||
|
||
int dims = reshape_dims_vec.size() * MAX_RANK_SUPPORTED + | ||
reduce_dims_vec.size() - MAX_RANK_SUPPORTED - 1; | ||
// no need reduce, just copy | ||
if (reduce_dims_vec.size() == 0) { | ||
auto* in0 = context.Input<Tensor>(framework::GradVarName("Out")); | ||
auto* out0 = context.Output<Tensor>(framework::GradVarName("X")); | ||
out0->mutable_data<T>(context.GetPlace()); | ||
out0->CopyFrom(*in0, context.GetPlace(), context.device_context()); | ||
} else { | ||
switch (dims) { | ||
REP_EXPAND_GRAD_TEMPLATE(72) | ||
default: | ||
PADDLE_ENFORCE( | ||
false, "Only support tensor with rank being between 1 and 6."); | ||
} | ||
} | ||
} | ||
|
||
protected: | ||
template <int Dims> | ||
void ExpandBackward(const framework::ExecutionContext& context, | ||
const std::vector<int>& reshape_dims_vec, | ||
const std::vector<int>& reduce_dims_vec) const { | ||
size_t reshape_size = Dims / MAX_RANK_SUPPORTED + 1; | ||
size_t reduce_size = Dims % MAX_RANK_SUPPORTED + 1; | ||
PADDLE_ENFORCE_EQ(reshape_size, reshape_dims_vec.size(), | ||
"Inconsistent size between template Dims and " | ||
"reshape dimensions."); | ||
PADDLE_ENFORCE_EQ(reduce_size, reduce_dims_vec.size(), | ||
"Inconsistent size between template Dims and " | ||
"reduce dimensions."); | ||
auto* in0 = context.Input<Tensor>(framework::GradVarName("Out")); | ||
auto* out0 = context.Output<Tensor>(framework::GradVarName("X")); | ||
auto x = EigenVector<T>::Flatten(*(context.Input<Tensor>("X"))); | ||
out0->mutable_data<T>(context.GetPlace()); | ||
auto x_grad = EigenVector<T>::Flatten(*out0); | ||
Eigen::DSizes<int, Dims / MAX_RANK_SUPPORTED + 1> reshape_dims; | ||
for (size_t i = 0; i < reshape_size; ++i) { | ||
reshape_dims[i] = reshape_dims_vec[i]; | ||
} | ||
Eigen::DSizes<int, Dims % MAX_RANK_SUPPORTED + 1> reduce_dims; | ||
for (size_t i = 0; i < reduce_size; ++i) { | ||
reduce_dims[i] = reduce_dims_vec[i]; | ||
} | ||
auto out_grad = EigenVector<T>::Flatten(*in0); | ||
x_grad.device(context.GetEigenDevice<Place>()) = | ||
out_grad.reshape(reshape_dims).sum(reduce_dims).reshape(x.dimensions()); | ||
} | ||
}; | ||
|
||
} // namespace operators | ||
} // namespace paddle |
Oops, something went wrong.
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Do not
using namespace
or type alias in the header file.There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Done.