Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Move conv-transpose OPs to phi #40675

Merged
merged 4 commits into from
Mar 21, 2022
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Original file line number Diff line number Diff line change
Expand Up @@ -28,7 +28,7 @@

USE_OP_ITSELF(batch_norm);
USE_OP_DEVICE_KERNEL(batch_norm, MKLDNN);
USE_OP(conv2d_transpose);
USE_OP_ITSELF(conv2d_transpose);
USE_OP_DEVICE_KERNEL(conv2d_transpose, MKLDNN);
USE_OP_ITSELF(elementwise_add);
USE_OP_DEVICE_KERNEL(elementwise_add, MKLDNN);
Expand Down
2 changes: 1 addition & 1 deletion paddle/fluid/inference/tensorrt/convert/test_conv2d_op.cc
Original file line number Diff line number Diff line change
Expand Up @@ -17,7 +17,7 @@ limitations under the License. */
#include "paddle/fluid/inference/tensorrt/convert/ut_helper.h"

USE_OP_ITSELF(conv2d);
USE_OP(conv2d_transpose);
USE_OP_ITSELF(conv2d_transpose);

namespace paddle {
namespace inference {
Expand Down
1,286 changes: 0 additions & 1,286 deletions paddle/fluid/operators/conv_transpose_cudnn_op.cu

This file was deleted.

276 changes: 45 additions & 231 deletions paddle/fluid/operators/conv_transpose_op.cc
Original file line number Diff line number Diff line change
Expand Up @@ -13,13 +13,17 @@ See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/operators/conv_transpose_op.h"
#include <memory>

#include <string>
#include <vector>
#include "paddle/fluid/framework/data_layout.h"
#include "paddle/fluid/framework/infershape_utils.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/op_version_registry.h"
#include "paddle/fluid/platform/cudnn_workspace_helper.h"

#include "paddle/phi/core/infermeta_utils.h"
#include "paddle/phi/infermeta/backward.h"
#include "paddle/phi/infermeta/binary.h"
#ifdef PADDLE_WITH_MKLDNN
#include "paddle/fluid/platform/mkldnn_helper.h"
#endif
Expand All @@ -29,165 +33,6 @@ namespace operators {

using DataLayout = framework::DataLayout;

void ConvTransposeOp::InferShape(framework::InferShapeContext* ctx) const {
OP_INOUT_CHECK(ctx->HasInput("Input"), "Input", "Input", "ConvTranspose");
OP_INOUT_CHECK(ctx->HasInput("Filter"), "Input", "Filter", "ConvTranspose");
OP_INOUT_CHECK(ctx->HasOutput("Output"), "Output", "Output", "ConvTranspose");

auto in_dims = ctx->GetInputDim("Input");
auto filter_dims = ctx->GetInputDim("Filter");
std::vector<int> output_size =
ctx->Attrs().Get<std::vector<int>>("output_size");
std::vector<int> output_padding =
ctx->Attrs().Get<std::vector<int>>("output_padding");
std::vector<int> strides = ctx->Attrs().Get<std::vector<int>>("strides");
std::vector<int> paddings = ctx->Attrs().Get<std::vector<int>>("paddings");
std::vector<int> dilations = ctx->Attrs().Get<std::vector<int>>("dilations");
int groups = ctx->Attrs().Get<int>("groups");
std::string padding_algorithm =
ctx->Attrs().Get<std::string>("padding_algorithm");
const std::string data_layout_str =
ctx->Attrs().Get<std::string>("data_format");
const DataLayout data_layout =
ctx->IsRunMKLDNNKernel() ? DataLayout::kNCHW
: framework::StringToDataLayout(data_layout_str);

PADDLE_ENFORCE_EQ(in_dims.size() == 4 || in_dims.size() == 5, true,
platform::errors::InvalidArgument(
"Input of Op(conv_transpose) should be 4-D or "
"5-D Tensor. But received: %u-D Tensor, "
"the shape of input is [%s]",
in_dims.size(), in_dims));
PADDLE_ENFORCE_EQ(
in_dims.size(), filter_dims.size(),
platform::errors::InvalidArgument(
"The input's dimension size and filter's dimension size of "
"Op (conv_transpose) should be equal. But received: the shape of "
"input is [%s], the dimension size of input is [%d], the shape "
"of filter is [%s], the dimension size of filter is [%d]. ",
in_dims, in_dims.size(), filter_dims, filter_dims.size()));

int stride_size = strides.size();
for (int i = 0; i < stride_size; ++i) {
PADDLE_ENFORCE_GT(
strides[i], 0,
platform::errors::InvalidArgument(
"The stride of Op(Conv) should be larget than 0, but received "
"stride is %d.",
strides[i]));
}

int in_sub_stride_size = in_dims.size() - stride_size;

PADDLE_ENFORCE_EQ(
in_dims.size() - strides.size(), 2U,
platform::errors::InvalidArgument(
"The input's dimension size minus Attr(stride)'s size must "
"be euqal to 2 for Op(conv_transpose). But received: [%d], the "
"input's dimension size is [%d], the shape of input "
"is [%s], the Attr(stride)'s size is [%d].",
in_sub_stride_size, in_dims.size(), in_dims, strides.size()));
if (output_size.size())
PADDLE_ENFORCE_EQ(
output_size.size(), strides.size(),
platform::errors::InvalidArgument(
"The Attr(output_size) and Attr(stride) of Op(conv_transpose) "
"should be the same."));
if (output_padding.size())
PADDLE_ENFORCE_EQ(
output_padding.size(), strides.size(),
platform::errors::InvalidArgument(
"The Attr(output_padding) and Attr(stride) of Op(conv_transpose) "
"should be the same."));

const int64_t C =
(data_layout != DataLayout::kNHWC ? in_dims[1]
: in_dims[in_dims.size() - 1]);
PADDLE_ENFORCE_EQ(
C, filter_dims[0],
platform::errors::InvalidArgument(
"The number of input channels should be equal to filter channels "
"for Op(conv_transpose). But received: the input's channels is "
"[%d], the shape of input is [%s], the filter's channels is [%d], "
"the shape of filter is [%s]. The data_format is %s."
"The error may come from wrong data_format setting.",
C, in_dims, filter_dims[0], filter_dims, data_layout_str));

framework::DDim in_data_dims;
if (data_layout != DataLayout::kNHWC) {
in_data_dims = phi::slice_ddim(in_dims, 2, in_dims.size());
} else {
in_data_dims = phi::slice_ddim(in_dims, 1, in_dims.size() - 1);
}
framework::DDim filter_data_dims =
phi::slice_ddim(filter_dims, 2, filter_dims.size());
std::vector<int> ksize = phi::vectorize<int>(filter_data_dims);
UpdatePaddingAndDilation(&paddings, &dilations, padding_algorithm,
in_data_dims, strides, ksize);

std::vector<int64_t> output_shape({in_dims[0]});
if (data_layout != DataLayout::kNHWC) {
output_shape.push_back(filter_dims[1] * groups);
}
const int offset = (data_layout != DataLayout::kNHWC ? 2 : 1);
for (size_t i = 0; i < strides.size(); ++i) {
auto filter_extent = dilations[i] * (filter_dims[i + 2] - 1) + 1;
auto infer_shape = (ctx->IsRuntime() || in_dims[i + offset] > 0)
? (in_dims[i + offset] - 1) * strides[i] -
paddings[2 * i] - paddings[2 * i + 1] +
filter_extent
: -1;
if (output_size.size()) {
if (ctx->IsRuntime()) {
PADDLE_ENFORCE_GE(
output_size[i], infer_shape,
platform::errors::InvalidArgument(
"output_size of Op(ConvTransposeOp) should not be "
"less than the infered output size. But received output_size = "
"[%s], whose dim %d is less than the infered output size [%s]",
phi::make_ddim(output_size).to_str(), i, infer_shape));
PADDLE_ENFORCE_LT(
output_size[i], infer_shape + strides[i],
platform::errors::InvalidArgument(
"output_size of Op(ConvTransposeOp) should be less "
"than infered size + stride. But received output_size = [%s], "
"whose dim %d is not less than the infered output size (%d) + "
"stride (%d) = %d",
phi::make_ddim(output_size).to_str(), i, infer_shape,
strides[i], infer_shape + strides[i]));
}
output_shape.push_back(output_size[i]);
} else if (output_padding.size()) {
if (ctx->IsRuntime()) {
PADDLE_ENFORCE_GE(
output_padding[i], 0,
platform::errors::InvalidArgument(
"output_padding of Op(ConvTransposeOp) should not be "
"less than the 0. But received output_padding = "
"[%s], whose dim %d is less than 0",
phi::make_ddim(output_padding).to_str(), i));
PADDLE_ENFORCE_LT(
output_padding[i], std::max(strides[i], dilations[i]),
platform::errors::InvalidArgument(
"output_padding of Op(ConvTransposeOp) should be less "
"than either stride or dilation. But received output_size = "
"[%s], "
"whose dim %d is not less than either stride (%d) or "
"dilation (%d)",
phi::make_ddim(output_size).to_str(), i, strides[i],
dilations[i]));
}
output_shape.push_back((infer_shape + output_padding[i]));
} else {
output_shape.push_back(infer_shape);
}
}
if (data_layout == DataLayout::kNHWC) {
output_shape.push_back(filter_dims[1] * groups);
}
ctx->SetOutputDim("Output", phi::make_ddim(output_shape));
}

framework::OpKernelType ConvTransposeOp::GetExpectedKernelType(
const framework::ExecutionContext& ctx) const {
framework::LibraryType library_{framework::LibraryType::kPlain};
Expand Down Expand Up @@ -217,7 +62,7 @@ framework::OpKernelType ConvTransposeOp::GetExpectedKernelType(
}

framework::OpKernelType ConvTransposeOp::GetKernelTypeForVar(
const std::string& var_name, const Tensor& tensor,
const std::string& var_name, const framework::Tensor& tensor,
const framework::OpKernelType& expected_kernel_type) const {
#ifdef PADDLE_WITH_MKLDNN
// Only input require reshaping, weights and
Expand Down Expand Up @@ -493,17 +338,6 @@ The input(X) size and output(Out) size may be different.
)DOC");
}

void ConvTransposeOpGrad::InferShape(framework::InferShapeContext* ctx) const {
auto in_dims = ctx->GetInputDim("Input");
auto filter_dims = ctx->GetInputDim("Filter");
if (ctx->HasOutput(framework::GradVarName("Input"))) {
ctx->SetOutputDim(framework::GradVarName("Input"), in_dims);
}
if (ctx->HasOutput(framework::GradVarName("Filter"))) {
ctx->SetOutputDim(framework::GradVarName("Filter"), filter_dims);
}
}

framework::OpKernelType ConvTransposeOpGrad::GetExpectedKernelType(
const framework::ExecutionContext& ctx) const {
bool use_cudnn =
Expand Down Expand Up @@ -587,24 +421,6 @@ class ConvTransposeDoubleGradMaker : public framework::SingleGradOpMaker<T> {
}
};

void ConvTransposeOpDoubleGrad::InferShape(
framework::InferShapeContext* ctx) const {
auto x_dims = ctx->GetInputDim("Input");
auto w_dims = ctx->GetInputDim("Filter");
auto do_dims = ctx->GetInputDim("DOutput");

if (ctx->HasOutput("DDOutput") &&
(ctx->HasInput("DDInput") || (ctx->HasInput("DDFilter")))) {
ctx->SetOutputDim("DDOutput", do_dims);
}
if (ctx->HasOutput("DFilter") && ctx->HasInput("DDInput")) {
ctx->SetOutputDim("DFilter", w_dims);
}
if (ctx->HasOutput("DInput") && ctx->HasInput("DDFilter")) {
ctx->SetOutputDim("DInput", x_dims);
}
}

framework::OpKernelType ConvTransposeOpDoubleGrad::GetExpectedKernelType(
const framework::ExecutionContext& ctx) const {
bool use_cudnn =
Expand Down Expand Up @@ -635,59 +451,57 @@ framework::OpKernelType ConvTransposeOpDoubleGrad::GetExpectedKernelType(
namespace ops = paddle::operators;

// conv2d_transpose
DECLARE_INFER_SHAPE_FUNCTOR(conv2d_transpose, Conv2dTranposeInferShapeFunctor,
PD_INFER_META(phi::ConvTransposeInferMeta));
DECLARE_INFER_SHAPE_FUNCTOR(conv2d_transpose_grad,
Conv2dTranposeGradInferShapeFunctor,
PD_INFER_META(phi::ConvTransposeGradInferMeta));
DECLARE_INFER_SHAPE_FUNCTOR(
conv2d_transpose_grad_grad, Conv2dTranposeDoubleGradInferShapeFunctor,
PD_INFER_META(phi::Conv2dTransposeDoubleGradInferMeta));

REGISTER_OPERATOR(conv2d_transpose, ops::ConvTransposeOp,
ops::Conv2DTransposeOpMaker,
ops::ConvTransposeGradOpMaker<paddle::framework::OpDesc>,
ops::ConvTransposeGradOpMaker<paddle::imperative::OpBase>);
REGISTER_OPERATOR(
conv2d_transpose_grad, ops::ConvTransposeOpGrad,
ops::ConvTransposeDoubleGradMaker<paddle::framework::OpDesc>,
ops::ConvTransposeDoubleGradMaker<paddle::imperative::OpBase>);
REGISTER_OPERATOR(conv2d_transpose_grad_grad, ops::ConvTransposeOpDoubleGrad);

REGISTER_OP_CPU_KERNEL(
conv2d_transpose,
ops::GemmConvTransposeKernel<paddle::platform::CPUDeviceContext, float>,
ops::GemmConvTransposeKernel<paddle::platform::CPUDeviceContext, double>);
REGISTER_OP_CPU_KERNEL(
conv2d_transpose_grad,
ops::GemmConvTransposeGradKernel<paddle::platform::CPUDeviceContext, float>,
ops::GemmConvTransposeGradKernel<paddle::platform::CPUDeviceContext,
double>);
ops::ConvTransposeGradOpMaker<paddle::imperative::OpBase>,
Conv2dTranposeInferShapeFunctor);
REGISTER_OPERATOR(conv2d_transpose_grad, ops::ConvTransposeOpGrad,
ops::ConvTransposeDoubleGradMaker<paddle::framework::OpDesc>,
ops::ConvTransposeDoubleGradMaker<paddle::imperative::OpBase>,
Conv2dTranposeGradInferShapeFunctor);
REGISTER_OPERATOR(conv2d_transpose_grad_grad, ops::ConvTransposeOpDoubleGrad,
Conv2dTranposeDoubleGradInferShapeFunctor);

// conv3d_transpose
DECLARE_INFER_SHAPE_FUNCTOR(conv3d_transpose, Conv3dTranposeInferShapeFunctor,
PD_INFER_META(phi::ConvTransposeInferMeta));
DECLARE_INFER_SHAPE_FUNCTOR(conv3d_transpose_grad,
Conv3dTranposeGradInferShapeFunctor,
PD_INFER_META(phi::ConvTransposeGradInferMeta));

REGISTER_OPERATOR(conv3d_transpose, ops::ConvTransposeOp,
ops::Conv3DTransposeOpMaker,
ops::ConvTransposeGradOpMaker<paddle::framework::OpDesc>,
ops::ConvTransposeGradOpMaker<paddle::imperative::OpBase>);
REGISTER_OPERATOR(conv3d_transpose_grad, ops::ConvTransposeOpGrad);

REGISTER_OP_CPU_KERNEL(
conv3d_transpose,
ops::GemmConvTransposeKernel<paddle::platform::CPUDeviceContext, float>,
ops::GemmConvTransposeKernel<paddle::platform::CPUDeviceContext, double>);
REGISTER_OP_CPU_KERNEL(
conv3d_transpose_grad,
ops::GemmConvTransposeGradKernel<paddle::platform::CPUDeviceContext, float>,
ops::GemmConvTransposeGradKernel<paddle::platform::CPUDeviceContext,
double>);
ops::ConvTransposeGradOpMaker<paddle::imperative::OpBase>,
Conv3dTranposeInferShapeFunctor);
REGISTER_OPERATOR(conv3d_transpose_grad, ops::ConvTransposeOpGrad,
Conv3dTranposeGradInferShapeFunctor);

// depthwise conv2d_transpose
DECLARE_INFER_SHAPE_FUNCTOR(depthwise_conv2d_transpose,
DepthWiseConv2dTranposeInferShapeFunctor,
PD_INFER_META(phi::ConvTransposeInferMeta));
DECLARE_INFER_SHAPE_FUNCTOR(depthwise_conv2d_transpose_grad,
DepthWiseConv2dTranposeGradInferShapeFunctor,
PD_INFER_META(phi::ConvTransposeGradInferMeta));

REGISTER_OPERATOR(depthwise_conv2d_transpose, ops::ConvTransposeOp,
ops::Conv2DTransposeOpMaker,
ops::ConvTransposeGradOpMaker<paddle::framework::OpDesc>,
ops::ConvTransposeGradOpMaker<paddle::imperative::OpBase>);
REGISTER_OPERATOR(depthwise_conv2d_transpose_grad, ops::ConvTransposeOpGrad);

REGISTER_OP_CPU_KERNEL(
depthwise_conv2d_transpose,
ops::GemmConvTransposeKernel<paddle::platform::CPUDeviceContext, float>,
ops::GemmConvTransposeKernel<paddle::platform::CPUDeviceContext, double>);
REGISTER_OP_CPU_KERNEL(
depthwise_conv2d_transpose_grad,
ops::GemmConvTransposeGradKernel<paddle::platform::CPUDeviceContext, float>,
ops::GemmConvTransposeGradKernel<paddle::platform::CPUDeviceContext,
double>);
ops::ConvTransposeGradOpMaker<paddle::imperative::OpBase>,
DepthWiseConv2dTranposeInferShapeFunctor);
REGISTER_OPERATOR(depthwise_conv2d_transpose_grad, ops::ConvTransposeOpGrad,
DepthWiseConv2dTranposeGradInferShapeFunctor);

REGISTER_OP_VERSION(conv_transpose)
.AddCheckpoint(
Expand Down
Loading