Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

【Hackathon No.60】refactor unary sparse ops and add sparse sqrt, tanh, sin #41356

Merged
merged 36 commits into from
May 12, 2022
Merged
Show file tree
Hide file tree
Changes from 34 commits
Commits
Show all changes
36 commits
Select commit Hold shift + click to select a range
97ac270
refactor unary sparse ops and add relu
tiancaishaonvjituizi Apr 2, 2022
26f4662
add test
tiancaishaonvjituizi Apr 2, 2022
a7f3410
fix the bug in generated api code, tests are passed now
tiancaishaonvjituizi Apr 4, 2022
d4310af
Merge branch 'develop' into sparse_relu
tiancaishaonvjituizi Apr 20, 2022
7e5f102
update relu for new sparse api
tiancaishaonvjituizi Apr 20, 2022
71864fd
update test, implement api, fix sqrt grad
tiancaishaonvjituizi Apr 21, 2022
a99a5ba
manually register relu and relu_grad kernel to bypass the restriction
tiancaishaonvjituizi Apr 21, 2022
95aa0b3
polish sqrt docs
tiancaishaonvjituizi Apr 21, 2022
f706dea
reformat
tiancaishaonvjituizi Apr 21, 2022
d898df7
polish docs
tiancaishaonvjituizi Apr 21, 2022
b770f41
remove csr backward api
tiancaishaonvjituizi Apr 21, 2022
f92e8cd
fix test compile error
tiancaishaonvjituizi Apr 21, 2022
394ce5e
use allclose instead of array_equal
tiancaishaonvjituizi Apr 21, 2022
c577f46
move sqrt to math_kernel.cc, implement sin and tanh
tiancaishaonvjituizi Apr 21, 2022
3ad6fba
polish header file
tiancaishaonvjituizi Apr 21, 2022
56fc5da
reformat
tiancaishaonvjituizi Apr 21, 2022
1f18c59
refine
tiancaishaonvjituizi Apr 21, 2022
c606825
fix typo
tiancaishaonvjituizi Apr 22, 2022
5dd4507
fix typo
tiancaishaonvjituizi Apr 22, 2022
f59fa26
add test about error, reformat
tiancaishaonvjituizi Apr 23, 2022
dea61c7
fix test error
tiancaishaonvjituizi Apr 23, 2022
60c7359
fix format
tiancaishaonvjituizi Apr 23, 2022
ad8ceda
fix false positive warning in gcc>=9
tiancaishaonvjituizi Apr 26, 2022
178dd27
use more aggressive way
tiancaishaonvjituizi Apr 26, 2022
1ace46f
Merge remote-tracking branch 'origin/develop' into sparse_relu
tiancaishaonvjituizi Apr 26, 2022
7bb41d7
add api in paddle.sparse namespace
tiancaishaonvjituizi Apr 26, 2022
790cb0d
Merge remote-tracking branch 'tiancaishaonv/variant_fix_gcc9_fp_warni…
tiancaishaonvjituizi Apr 26, 2022
c44ac74
address reviews
tiancaishaonvjituizi Apr 27, 2022
d35e923
Merge remote-tracking branch 'origin/develop' into sparse_relu
tiancaishaonvjituizi Apr 27, 2022
b04ab6c
fix ci error
tiancaishaonvjituizi Apr 29, 2022
fa93d7d
rename to unary_kernel, update name
tiancaishaonvjituizi May 6, 2022
a6d2cd0
Merge remote-tracking branch 'origin/develop' into sparse_relu
tiancaishaonvjituizi May 6, 2022
67d14b4
remove unused files
tiancaishaonvjituizi May 6, 2022
268ac34
rename python files
tiancaishaonvjituizi May 6, 2022
39c9750
fix import path
tiancaishaonvjituizi May 7, 2022
06787c0
reformat
tiancaishaonvjituizi May 9, 2022
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions paddle/phi/kernels/activation_grad_kernel.h
Original file line number Diff line number Diff line change
Expand Up @@ -187,6 +187,7 @@ DECLARE_ACTIVATION_GRAD_KERNEL_DEPX(Log1p);
DECLARE_ACTIVATION_GRAD_KERNEL_DEPOUT(Relu);
DECLARE_ACTIVATION_GRAD_KERNEL_DEPOUT(Tanh);
DECLARE_ACTIVATION_GRAD_KERNEL_DEPOUT(Sigmoid);
DECLARE_ACTIVATION_GRAD_KERNEL_DEPOUT(Sqrt);
Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

之前 dense tensor 的 SqrtGrad kernel 没有在头文件中声明


DECLARE_ACTIVATION_GRAD_KERNEL_NODEP(Round);
DECLARE_ACTIVATION_GRAD_KERNEL_NODEP(Floor);
Expand Down
70 changes: 0 additions & 70 deletions paddle/phi/kernels/sparse/activation_grad_kernel.cc

This file was deleted.

29 changes: 0 additions & 29 deletions paddle/phi/kernels/sparse/activation_grad_kernel.h

This file was deleted.

66 changes: 0 additions & 66 deletions paddle/phi/kernels/sparse/activation_kernel.cc

This file was deleted.

39 changes: 0 additions & 39 deletions paddle/phi/kernels/sparse/activation_kernel.h

This file was deleted.

183 changes: 183 additions & 0 deletions paddle/phi/kernels/sparse/unary_grad_kernel.cc
Original file line number Diff line number Diff line change
@@ -0,0 +1,183 @@
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/phi/kernels/sparse/unary_grad_kernel.h"

#include "paddle/phi/backends/cpu/cpu_context.h"
#include "paddle/phi/backends/gpu/gpu_context.h"
#include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/core/sparse_coo_tensor.h"
#include "paddle/phi/core/sparse_csr_tensor.h"
#include "paddle/phi/kernels/activation_grad_kernel.h"
#include "paddle/phi/kernels/copy_kernel.h"
#include "paddle/phi/kernels/empty_kernel.h"

#define DEFINE_SPARSE_UNARY_GRAD_KERNEL(DenseKernelFunc) \
namespace phi { \
namespace sparse { \
\
template <typename T, typename Context> \
void SparseCoo##DenseKernelFunc(const Context& dev_ctx, \
const SparseCooTensor& x_or_out, \
const SparseCooTensor& out_grad, \
SparseCooTensor* x_grad) { \
DenseTensor non_zero_indices = \
phi::EmptyLike<T, Context>(dev_ctx, x_or_out.non_zero_indices()); \
DenseTensor non_zero_elements = \
phi::EmptyLike<T, Context>(dev_ctx, x_or_out.non_zero_elements()); \
phi::Copy(dev_ctx, \
x_or_out.non_zero_indices(), \
dev_ctx.GetPlace(), \
false, \
&non_zero_indices); \
phi::DenseKernelFunc<T, Context>(dev_ctx, \
x_or_out.non_zero_elements(), \
out_grad.non_zero_elements(), \
&non_zero_elements); \
x_grad->SetMember( \
non_zero_indices, non_zero_elements, x_or_out.dims(), true); \
} \
\
template <typename T, typename Context> \
void SparseCsr##DenseKernelFunc(const Context& dev_ctx, \
const SparseCsrTensor& x_or_out, \
const SparseCsrTensor& out_grad, \
SparseCsrTensor* out) { \
DenseTensor non_zero_crows = \
phi::EmptyLike<T, Context>(dev_ctx, x_or_out.non_zero_crows()); \
DenseTensor non_zero_cols = \
phi::EmptyLike<T, Context>(dev_ctx, x_or_out.non_zero_cols()); \
DenseTensor non_zero_elements = \
phi::EmptyLike<T, Context>(dev_ctx, x_or_out.non_zero_elements()); \
phi::Copy(dev_ctx, \
x_or_out.non_zero_crows(), \
dev_ctx.GetPlace(), \
false, \
&non_zero_crows); \
phi::Copy(dev_ctx, \
x_or_out.non_zero_cols(), \
dev_ctx.GetPlace(), \
false, \
&non_zero_cols); \
phi::DenseKernelFunc<T, Context>(dev_ctx, \
x_or_out.non_zero_elements(), \
out_grad.non_zero_elements(), \
&non_zero_elements); \
out->SetMember( \
non_zero_crows, non_zero_cols, non_zero_elements, x_or_out.dims()); \
} \
} \
}

#define REGISTER_CPU_SPARSE_UNARY_KERNEL(kernel_name, DenseKernelFunc) \
PD_REGISTER_KERNEL(sparse_coo_##kernel_name, \
CPU, \
ALL_LAYOUT, \
phi::sparse::SparseCoo##DenseKernelFunc, \
float, \
double) { \
kernel->InputAt(0).SetDataLayout(phi::DataLayout::SPARSE_COO); \
} \
PD_REGISTER_KERNEL(sparse_csr_##kernel_name, \
CPU, \
ALL_LAYOUT, \
phi::sparse::SparseCsr##DenseKernelFunc, \
float, \
double) { \
kernel->InputAt(0).SetDataLayout(phi::DataLayout::SPARSE_CSR); \
}

#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
#define REGISTER_GPU_SPARSE_UNARY_KERNEL(kernel_name, DenseKernelFunc) \
PD_REGISTER_KERNEL(sparse_coo_##kernel_name, \
GPU, \
ALL_LAYOUT, \
phi::sparse::SparseCoo##DenseKernelFunc, \
float, \
double, \
phi::dtype::float16) { \
kernel->InputAt(0).SetDataLayout(phi::DataLayout::SPARSE_COO); \
} \
\
PD_REGISTER_KERNEL(sparse_csr_##kernel_name, \
GPU, \
ALL_LAYOUT, \
phi::sparse::SparseCsr##DenseKernelFunc, \
float, \
double, \
phi::dtype::float16) { \
kernel->InputAt(0).SetDataLayout(phi::DataLayout::SPARSE_CSR); \
}
#else
// This macro definition is empty when GPU is disabled
#define REGISTER_GPU_SPARSE_UNARY_KERNEL(sparse_kernel_name, DenseKernelFunc)
#endif

#define REGISTER_SPARSE_UNARY_KERNEL(kernel_name, DenseKernelFunc) \
REGISTER_CPU_SPARSE_UNARY_KERNEL(kernel_name, DenseKernelFunc) \
REGISTER_GPU_SPARSE_UNARY_KERNEL(kernel_name, DenseKernelFunc)

#define DEFINE_AND_REGISTER_SPARSE_UNARY_GRAD_KERNEL(kernel_name, \
DenseKernelFunc) \
DEFINE_SPARSE_UNARY_GRAD_KERNEL(DenseKernelFunc) \
REGISTER_SPARSE_UNARY_KERNEL(kernel_name, DenseKernelFunc)

// NOTE: the following code is to bypass the restriction of Paddle
// kernel registration mechanism. Do NOT refactor them unless you
// know what you are doing.
// If you want to implement any new kernel, please follow `sin_grad`,
// `tanh_grad` etc, do NOT follow the following `relu_grad`.
DEFINE_SPARSE_UNARY_GRAD_KERNEL(ReluGradKernel)

PD_REGISTER_KERNEL(sparse_coo_relu_grad,
CPU,
ALL_LAYOUT,
phi::sparse::SparseCooReluGradKernel,
float,
double) {
kernel->InputAt(0).SetDataLayout(phi::DataLayout::SPARSE_COO);
}
PD_REGISTER_KERNEL(sparse_csr_relu_grad,
CPU,
ALL_LAYOUT,
phi::sparse::SparseCsrReluGradKernel,
float,
double) {
kernel->InputAt(0).SetDataLayout(phi::DataLayout::SPARSE_CSR);
}
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
PD_REGISTER_KERNEL(sparse_coo_relu_grad,
GPU,
ALL_LAYOUT,
phi::sparse::SparseCooReluGradKernel,
float,
double,
phi::dtype::float16) {
kernel->InputAt(0).SetDataLayout(phi::DataLayout::SPARSE_COO);
}

PD_REGISTER_KERNEL(sparse_csr_relu_grad,
GPU,
ALL_LAYOUT,
phi::sparse::SparseCsrReluGradKernel,
float,
double,
phi::dtype::float16) {
kernel->InputAt(0).SetDataLayout(phi::DataLayout::SPARSE_CSR);
}
#endif

DEFINE_AND_REGISTER_SPARSE_UNARY_GRAD_KERNEL(sin_grad, SinGradKernel)
DEFINE_AND_REGISTER_SPARSE_UNARY_GRAD_KERNEL(sqrt_grad, SqrtGradKernel)
DEFINE_AND_REGISTER_SPARSE_UNARY_GRAD_KERNEL(tanh_grad, TanhGradKernel)
Loading