Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[cherry pick][Inference]Enhance gpu multihead matmul v3 fuse pass #43765

Merged
merged 1 commit into from
Jun 23, 2022
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
3 changes: 2 additions & 1 deletion paddle/fluid/framework/ir/multihead_matmul_fuse_pass.cc
Original file line number Diff line number Diff line change
Expand Up @@ -423,7 +423,8 @@ PDNode* MultiHeadMatmulPattern::operator()() {
}

PDNode* MultiHeadMatmulV3Pattern::operator()() {
std::unordered_set<std::string> matmul_ops{"matmul", "matmul_v2"};
// Add mul op to support huggingface onnx model convertsion by x2paddle
std::unordered_set<std::string> matmul_ops{"mul", "matmul", "matmul_v2"};
auto* input0 = pattern->NewNode(input0_repr());
input0->assert_is_ops_input(matmul_ops);

Expand Down
2 changes: 2 additions & 0 deletions paddle/fluid/inference/api/paddle_pass_builder.cc
Original file line number Diff line number Diff line change
Expand Up @@ -145,6 +145,8 @@ GpuPassStrategy::GpuPassStrategy() : PassStrategy({}) {
"gpu_cpu_flatten2_matmul_fuse_pass", //
"gpu_cpu_map_matmul_v2_to_mul_pass", //
"gpu_cpu_map_matmul_v2_to_matmul_pass", //
"matmul_scale_fuse_pass", //
"multihead_matmul_fuse_pass_v3", //
"gpu_cpu_map_matmul_to_mul_pass", //
"fc_fuse_pass", //
"fc_elementwise_layernorm_fuse_pass", //
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -43,6 +43,12 @@ def sample_predictor_configs(self, program_config):
config = self.create_inference_config(use_mkldnn=True)
yield config, ["matmul", ], (1e-5, 1e-5)

# gpu
config = self.create_inference_config(use_gpu=True)
yield config, [
"matmul",
], (1e-5, 1e-5)

def sample_program_config(self, draw):
# 1. Generate shape and attr of matmul
x_shape = draw(
Expand Down
Original file line number Diff line number Diff line change
@@ -0,0 +1,215 @@
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from auto_scan_test import PassAutoScanTest, IgnoreReasons
from program_config import TensorConfig, ProgramConfig, OpConfig
import numpy as np
import paddle.inference as paddle_infer
from functools import partial
from typing import Optional, List, Callable, Dict, Any, Set
import unittest

import hypothesis
from hypothesis import given, settings, seed, example, assume, reproduce_failure
import hypothesis.strategies as st


class TestMultiheadMatmulFusePass(PassAutoScanTest):

def sample_predictor_configs(self, program_config):
# gpu
config = self.create_inference_config(use_gpu=True)
yield config, ["multihead_matmul", "mul"], (1e-2, 1e-3)

def sample_program_config(self, draw):

def generate_mul_input():
return np.random.random([1, 128, 768]).astype(np.float32) - 0.5

def generate_elewise_input():
return np.random.random([1, 12, 128, 128]).astype(np.float32)

mul_0 = OpConfig("mul",
inputs={
"X": ["mul_x"],
"Y": ["mul_0_w"]
},
outputs={"Out": ["mul_0_out"]},
x_num_col_dims=2,
y_num_col_dims=1)
mul_1 = OpConfig("mul",
inputs={
"X": ["mul_x"],
"Y": ["mul_1_w"]
},
outputs={"Out": ["mul_1_out"]},
x_num_col_dims=2,
y_num_col_dims=1)
mul_2 = OpConfig("mul",
inputs={
"X": ["mul_x"],
"Y": ["mul_2_w"]
},
outputs={"Out": ["mul_2_out"]},
x_num_col_dims=2,
y_num_col_dims=1)
ele_0 = OpConfig("elementwise_add",
inputs={
"X": [mul_0.outputs["Out"][0]],
"Y": ["ele_0_w"]
},
outputs={"Out": ["ele_0_out"]},
axis=-1)
ele_1 = OpConfig("elementwise_add",
inputs={
"X": [mul_1.outputs["Out"][0]],
"Y": ["ele_1_w"]
},
outputs={"Out": ["ele_1_out"]},
axis=-1)
ele_2 = OpConfig("elementwise_add",
inputs={
"X": [mul_2.outputs["Out"][0]],
"Y": ["ele_2_w"]
},
outputs={"Out": ["ele_2_out"]},
axis=-1)
reshape_0 = OpConfig("reshape2",
inputs={"X": [ele_0.outputs["Out"][0]]},
outputs={
"Out": ["reshape_0_out"],
"XShape": ["reshape_0_Xout"]
},
shape=(1, 128, 12, 64))
reshape_1 = OpConfig("reshape2",
inputs={"X": [ele_1.outputs["Out"][0]]},
outputs={
"Out": ["reshape_1_out"],
"XShape": ["reshape_1_Xout"]
},
shape=(1, 128, 12, 64))
reshape_2 = OpConfig("reshape2",
inputs={"X": [ele_2.outputs["Out"][0]]},
outputs={
"Out": ["reshape_2_out"],
"XShape": ["reshape_2_Xout"]
},
shape=(1, 128, 12, 64))
transpose_0 = OpConfig("transpose2",
inputs={"X": [reshape_0.outputs["Out"][0]]},
outputs={"Out": ["transpose_0_out"]},
axis=(0, 2, 1, 3))
transpose_1 = OpConfig("transpose2",
inputs={"X": [reshape_1.outputs["Out"][0]]},
outputs={"Out": ["transpose_1_out"]},
axis=(0, 2, 3, 1))
transpose_2 = OpConfig("transpose2",
inputs={"X": [reshape_2.outputs["Out"][0]]},
outputs={"Out": ["transpose_2_out"]},
axis=(0, 2, 1, 3))
matmul_0 = OpConfig("matmul",
inputs={
"X": [transpose_0.outputs["Out"][0]],
"Y": [transpose_1.outputs["Out"][0]]
},
outputs={"Out": ["matmul_0_out"]},
alpha=0.125,
transpose_X=False,
transpose_Y=False,
fused_reshape_Out=[],
fused_reshape_X=[],
fused_reshape_Y=[],
fused_transpose_Out=[],
fused_transpose_X=[],
fused_transpose_Y=[])
ele_3 = OpConfig("elementwise_add",
inputs={
"X": [matmul_0.outputs["Out"][0]],
"Y": ["eltadd_qk_b_var"]
},
outputs={"Out": ["ele_3_out"]},
axis=-1)
softmax_op = OpConfig("softmax",
inputs={"X": [ele_3.outputs["Out"][0]]},
outputs={"Out": ["softmax_out"]},
axis=3,
is_test=True)
matmul_1 = OpConfig("matmul",
inputs={
"X": [softmax_op.outputs["Out"][0]],
"Y": [transpose_2.outputs["Out"][0]]
},
outputs={"Out": ["matmul_1_out"]},
alpha=1.0,
transpose_X=False,
transpose_Y=False,
fused_reshape_Out=[],
fused_reshape_X=[],
fused_reshape_Y=[],
fused_transpose_Out=[],
fused_transpose_X=[],
fused_transpose_Y=[])
transpose_3 = OpConfig("transpose2",
inputs={"X": [matmul_1.outputs["Out"][0]]},
outputs={"Out": ["transpose_3_out"]},
axis=(0, 2, 1, 3))
reshape_3 = OpConfig("reshape2",
inputs={"X": [transpose_3.outputs["Out"][0]]},
outputs={
"Out": ["reshape_3_out"],
"XShape": ["reshape_3_Xout"]
},
shape=(1, 128, 768))
mul_3 = OpConfig("mul",
inputs={
"X": [reshape_3.outputs["Out"][0]],
"Y": ["mul_3_w"]
},
outputs={"Out": ["mul_3_out"]},
x_num_col_dims=2,
y_num_col_dims=1)
ops = [
mul_0, mul_1, mul_2, ele_0, ele_1, ele_2, reshape_0, reshape_1,
reshape_2, transpose_0, transpose_1, transpose_2, matmul_0, ele_3,
softmax_op, matmul_1, transpose_3, reshape_3, mul_3
]
program_config = ProgramConfig(
ops=ops,
inputs={
"mul_x":
TensorConfig(data_gen=partial(generate_mul_input)),
"eltadd_qk_b_var":
TensorConfig(data_gen=partial(generate_elewise_input))
},
weights={
"mul_0_w": TensorConfig(shape=[768, 768]),
"mul_1_w": TensorConfig(shape=[768, 768]),
"mul_2_w": TensorConfig(shape=[768, 768]),
"mul_3_w": TensorConfig(shape=[768, 768]),
"ele_0_w": TensorConfig(shape=[768]),
"ele_1_w": TensorConfig(shape=[768]),
"ele_2_w": TensorConfig(shape=[768])
},
outputs=[ops[-1].outputs["Out"][0]])
return program_config

def test(self):
self.run_and_statis(quant=False,
max_examples=100,
min_success_num=1,
passes=["multihead_matmul_fuse_pass_v3"])


if __name__ == "__main__":
unittest.main()