Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[API/Op] Fix bugs of API paddle.linalg.lstsq #44280

Merged
merged 1 commit into from
Jul 13, 2022
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
23 changes: 16 additions & 7 deletions paddle/fluid/operators/lstsq_op.cu
Original file line number Diff line number Diff line change
Expand Up @@ -100,7 +100,7 @@ class LstsqCUDAKernel : public framework::OpKernel<T> {
true,
batch_count,
m,
n,
nrhs,
k,
x_data,
x_stride,
Expand Down Expand Up @@ -137,14 +137,17 @@ class LstsqCUDAKernel : public framework::OpKernel<T> {

// Step 2, solve R^H Z = Y
Tensor trans_r = dito.Transpose(new_x);
Tensor slice_r = dito.Slice(trans_r, {-2}, {0}, {min_mn});
Tensor res_r = dito.TrilTriu(slice_r, 0, false);

phi::TriangularSolveKernel<T, Context>(
phi_dev_ctx, trans_r, new_y, true, true, false, solution);
phi_dev_ctx, res_r, new_y, true, true, false, solution);

// Step 3, X <- Q Z
BatchedOrgqr<DeviceContext, T>(dev_ctx,
batch_count,
n,
n,
m,
min_mn,
x_data,
n,
Expand Down Expand Up @@ -183,15 +186,18 @@ void BatchedOrmqr<platform::CUDADeviceContext, float>(
auto handle = dev_ctx.cusolver_dn_handle();
PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::cusolverDnSormqr_bufferSize(
handle, side, trans, m, n, k, a, lda, tau, other, ldc, &lwork));
auto workspace = memory::Alloc(dev_ctx, lwork * sizeof(float));
float* workspace_ptr = reinterpret_cast<float*>(workspace->ptr());
auto info = memory::Alloc(dev_ctx, sizeof(int));
int* info_d = reinterpret_cast<int*>(info->ptr());

for (int i = 0; i < batch_size; ++i) {
float* a_working_ptr = &a[i * a_stride];
float* tau_working_ptr = &tau[i * tau_stride];
float* other_working_ptr = &other[i * other_stride];

handle = dev_ctx.cusolver_dn_handle();
auto workspace = memory::Alloc(dev_ctx, lwork * sizeof(float));
float* workspace_ptr = reinterpret_cast<float*>(workspace->ptr());

// compute ormgr
PADDLE_ENFORCE_GPU_SUCCESS(
platform::dynload::cusolverDnSormqr(handle,
Expand Down Expand Up @@ -249,15 +255,18 @@ void BatchedOrmqr<platform::CUDADeviceContext, double>(
auto handle = dev_ctx.cusolver_dn_handle();
PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::cusolverDnDormqr_bufferSize(
handle, side, trans, m, n, k, a, lda, tau, other, ldc, &lwork));
auto workspace = memory::Alloc(dev_ctx, lwork * sizeof(double));
double* workspace_ptr = reinterpret_cast<double*>(workspace->ptr());
auto info = memory::Alloc(dev_ctx, sizeof(int));
int* info_d = reinterpret_cast<int*>(info->ptr());

for (int i = 0; i < batch_size; ++i) {
double* a_working_ptr = &a[i * a_stride];
double* tau_working_ptr = &tau[i * tau_stride];
double* other_working_ptr = &other[i * other_stride];

handle = dev_ctx.cusolver_dn_handle();
auto workspace = memory::Alloc(dev_ctx, lwork * sizeof(double));
double* workspace_ptr = reinterpret_cast<double*>(workspace->ptr());

// compute ormgr
PADDLE_ENFORCE_GPU_SUCCESS(
platform::dynload::cusolverDnDormqr(handle,
Expand Down
26 changes: 23 additions & 3 deletions python/paddle/fluid/tests/unittests/test_linalg_lstsq_op.py
Original file line number Diff line number Diff line change
Expand Up @@ -175,6 +175,16 @@ def init_config(self):
self._input_shape_2 = (5, 8)


class LinalgLstsqTestCase3(LinalgLstsqTestCase):

def init_config(self):
self.dtype = 'float64'
self.rcond = 1e-15
self.driver = "gels"
self._input_shape_1 = (10, 7, 3)
self._input_shape_2 = (10, 7, 6)


class LinalgLstsqTestCaseRcond(LinalgLstsqTestCase):

def init_config(self):
Expand All @@ -192,7 +202,17 @@ def init_config(self):
self.rcond = None
self.driver = "gels"
self._input_shape_1 = (10, 5)
self._input_shape_2 = (10, 2)
self._input_shape_2 = (10, 8)


class LinalgLstsqTestCaseGelsFloat64(LinalgLstsqTestCase):

def init_config(self):
self.dtype = 'float32'
self.rcond = None
self.driver = "gels"
self._input_shape_1 = (3, 2, 8)
self._input_shape_2 = (3, 2, 15)


class LinalgLstsqTestCaseGelssFloat64(LinalgLstsqTestCase):
Expand Down Expand Up @@ -230,9 +250,9 @@ class LinalgLstsqTestCaseBatch2(LinalgLstsqTestCase):
def init_config(self):
self.dtype = 'float64'
self.rcond = 1e-15
self.driver = "gelss"
self.driver = "gels"
self._input_shape_1 = (10, 8, 6)
self._input_shape_2 = (10, 8, 2)
self._input_shape_2 = (10, 8, 10)


class LinalgLstsqTestCaseLarge1(LinalgLstsqTestCase):
Expand Down