Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[PHI] Move lu to phi #44605

Merged
merged 18 commits into from
Jul 29, 2022
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
122 changes: 14 additions & 108 deletions paddle/fluid/operators/lu_op.cc
Original file line number Diff line number Diff line change
Expand Up @@ -13,6 +13,11 @@ See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/operators/lu_op.h"
#include "paddle/fluid/framework/infershape_utils.h"
#include "paddle/fluid/framework/op_registry.h"

#include "paddle/phi/infermeta/backward.h"
#include "paddle/phi/infermeta/unary.h"

namespace paddle {
namespace operators {
Expand All @@ -39,39 +44,6 @@ class LUOp : public framework::OperatorWithKernel {
public:
using framework::OperatorWithKernel::OperatorWithKernel;

void InferShape(framework::InferShapeContext *context) const override {
OP_INOUT_CHECK(context->HasInput("X"), "Input", "X", "LU");
OP_INOUT_CHECK(context->HasOutput("Out"), "Output", "Out", "LU");
Bobholamovic marked this conversation as resolved.
Show resolved Hide resolved
bool pivots = context->Attrs().Get<bool>("pivots");
auto x_dims = context->GetInputDim("X");
int x_rank = x_dims.size();
PADDLE_ENFORCE_GE(x_rank,
2,
platform::errors::InvalidArgument(
"the rank of input must greater than 2"));
context->SetOutputDim("Out", x_dims);
int m = x_dims[x_rank - 1];
int n = x_dims[x_rank - 2];
int min_mn = std::min(m, n);
auto dims_vec = phi::vectorize(x_dims);
OP_INOUT_CHECK(context->HasOutput("Infos"), "Output", "Infos", "LU");
if (x_rank == 2) {
auto Infos_dim = std::vector<int>(1);
context->SetOutputDim("Infos", phi::make_ddim(Infos_dim));
} else {
auto Infos_dim =
std::vector<int>(dims_vec.begin(), dims_vec.begin() + x_rank - 2);
context->SetOutputDim("Infos", phi::make_ddim(Infos_dim));
}
if (pivots) {
OP_INOUT_CHECK(context->HasOutput("Pivots"), "Output", "Pivots", "LU");
auto Pivots_dim =
std::vector<int>(dims_vec.begin(), dims_vec.begin() + x_rank - 1);
Pivots_dim[x_rank - 2] = min_mn;
context->SetOutputDim("Pivots", phi::make_ddim(Pivots_dim));
}
}

protected:
framework::OpKernelType GetExpectedKernelType(
const framework::ExecutionContext &ctx) const override {
Expand Down Expand Up @@ -99,57 +71,6 @@ class LUOpVarTypeInference : public framework::VarTypeInference {
}
};

template <typename T>
class LUKernel : public framework::OpKernel<T> {
public:
void Compute(const paddle::framework::ExecutionContext &ctx) const override {
auto pivots = ctx.Attr<bool>("pivots");
auto *xin = ctx.Input<framework::Tensor>("X");
auto *out = ctx.Output<framework::Tensor>("Out");
auto *IpivT = ctx.Output<framework::Tensor>("Pivots");
auto *InfoT = ctx.Output<framework::Tensor>("Infos");
PADDLE_ENFORCE_EQ(pivots,
true,
platform::errors::InvalidArgument(
"lu without pivoting is not implemented on the CPU, "
"but got pivots=False"));

math::DeviceIndependenceTensorOperations<phi::CPUContext, T> helper(ctx);
*out = helper.Transpose(*xin);

auto outdims = out->dims();
auto outrank = outdims.size();

int m = static_cast<int>(outdims[outrank - 1]);
int n = static_cast<int>(outdims[outrank - 2]);
int lda = std::max(1, m);

auto ipiv_dims = phi::slice_ddim(outdims, 0, outrank - 1);
ipiv_dims[outrank - 2] = std::min(m, n);
IpivT->Resize(ipiv_dims);
auto ipiv_data = IpivT->mutable_data<int>(ctx.GetPlace());

auto info_dims = phi::slice_ddim(outdims, 0, outrank - 2);
if (info_dims.size() == 0) {
info_dims = phi::make_ddim({1});
}
InfoT->Resize(info_dims);
auto info_data = InfoT->mutable_data<int>(ctx.GetPlace());

auto batchsize = product(info_dims);
batchsize = std::max(static_cast<int>(batchsize), 1);
auto out_data = out->mutable_data<T>(ctx.GetPlace());
for (int b = 0; b < batchsize; b++) {
auto out_data_item = &out_data[b * m * n];
int *info_data_item = &info_data[b];
int *ipiv_data_item = &ipiv_data[b * std::min(m, n)];
phi::funcs::lapackLu<T>(
m, n, out_data_item, lda, ipiv_data_item, info_data_item);
}
*out = helper.Transpose(*out);
}
};

template <typename T>
class LUOpGradMaker : public framework::SingleGradOpMaker<T> {
public:
Expand Down Expand Up @@ -184,23 +105,6 @@ class LUGradOp : public framework::OperatorWithKernel {
public:
using framework::OperatorWithKernel::OperatorWithKernel;

void InferShape(framework::InferShapeContext *ctx) const override {
OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X", "lu");
OP_INOUT_CHECK(ctx->HasInput("Out"), "Input", "Out", "lu");
OP_INOUT_CHECK(ctx->HasInput("Pivots"), "Input", "Pivots", "lu");
OP_INOUT_CHECK(ctx->HasInput(framework::GradVarName("Out")),
"Input",
"Out@GRAD",
"lu");

auto x_dims = ctx->GetInputDim("X");
auto x_grad_name = framework::GradVarName("X");

if (ctx->HasOutput(x_grad_name)) {
ctx->SetOutputDim(x_grad_name, x_dims);
}
}

protected:
framework::OpKernelType GetExpectedKernelType(
const framework::ExecutionContext &ctx) const override {
Expand All @@ -219,19 +123,21 @@ DECLARE_INPLACE_OP_INFERER(LUGradOpInplaceInferer,
namespace ops = paddle::operators;
namespace plat = paddle::platform;

DECLARE_INFER_SHAPE_FUNCTOR(lu,
LUInferMetaFunctor,
PD_INFER_META(phi::LUInferMeta));
DECLARE_INFER_SHAPE_FUNCTOR(lu_grad,
LUGradInferMetaFunctor,
PD_INFER_META(phi::LUGradInferMeta));

REGISTER_OPERATOR(lu,
ops::LUOp,
ops::LUOpMaker,
ops::LUOpVarTypeInference,
ops::LUOpGradMaker<paddle::framework::OpDesc>,
ops::LUOpGradMaker<paddle::imperative::OpBase>,
ops::LUOpInplaceInferer);
LUInferMetaFunctor);
REGISTER_OPERATOR(lu_grad,
ops::LUGradOp,
ops::LUGradOpVarTypeInference,
ops::LUGradOpInplaceInferer);

REGISTER_OP_CPU_KERNEL(lu, ops::LUKernel<float>, ops::LUKernel<double>);
REGISTER_OP_CPU_KERNEL(lu_grad,
ops::LUGradKernel<phi::CPUContext, float>,
ops::LUGradKernel<phi::CPUContext, double>);
LUGradInferMetaFunctor);
194 changes: 0 additions & 194 deletions paddle/fluid/operators/lu_op.cu

This file was deleted.

Loading