Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[CustomDevice] add process_group_xccl ut #44632

Merged
merged 2 commits into from
Jul 27, 2022
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions python/paddle/fluid/tests/custom_runtime/CMakeLists.txt
Original file line number Diff line number Diff line change
Expand Up @@ -5,6 +5,7 @@ if(WITH_CUSTOM_DEVICE)
"test_*.py")
string(REPLACE ".py" "" TEST_OPS "${TEST_OPS}")

list(REMOVE_ITEM TEST_OPS "test_collective_process_group_xccl")
foreach(TEST_OP ${TEST_OPS})
py_test(${TEST_OP} SRCS ${TEST_OP}.py)
endforeach()
Expand Down
Original file line number Diff line number Diff line change
@@ -0,0 +1,42 @@
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
import sys
import time


def train(prefix):
selected_accelerators = os.getenv("FLAGS_selected_accelerators")
selected_custom_devices = os.getenv("FLAGS_selected_custom_cpus")
trainer_id = int(os.getenv("PADDLE_TRAINER_ID"))
worker_endpoints_env = os.getenv("PADDLE_TRAINER_ENDPOINTS")
current_endpoint = os.getenv("PADDLE_CURRENT_ENDPOINT")
worker_endpoints = worker_endpoints_env
trainers_num = len(worker_endpoints.split(','))
device_ids = os.getenv("PADDLE_WORLD_DEVICE_IDS")
current_device_id = os.getenv("PADDLE_LOCAL_DEVICE_IDS")

details = "selected_accelerators:{} selected_custom_devices:{} worker_endpoints:{} trainers_num:{} current_endpoint:{} trainer_id:{} device_ids:{} device_id:{}"\
.format(selected_accelerators, selected_custom_devices, worker_endpoints, trainers_num, current_endpoint,trainer_id,device_ids, current_device_id)

print(details)
with open("multi_process_{}.check_{}.log".format(prefix, trainer_id),
"w") as f:
f.write(details)


if __name__ == '__main__':
prefix = sys.argv[1]
train(prefix)
241 changes: 241 additions & 0 deletions python/paddle/fluid/tests/custom_runtime/process_group_xccl.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,241 @@
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function

import unittest
import random
import numpy as np
import os
import shutil

import paddle
from paddle.fluid import core
from datetime import timedelta
import paddle.fluid.core as core
from paddle.fluid.framework import _test_eager_guard
from paddle.fluid.dygraph.parallel import ParallelEnv


def init_process_group(strategy=None):
nranks = ParallelEnv().nranks
rank = ParallelEnv().local_rank
is_master = True if rank == 0 else False
store = paddle.fluid.core.TCPStore("127.0.0.1", 6173, is_master, nranks)
pg_group = core.ProcessGroupCustom(
store, rank, nranks,
paddle.CustomPlace(ParallelEnv().device_type,
ParallelEnv().device_id))

return pg_group


class TestProcessGroupFp32(unittest.TestCase):

def setUp(self):
paddle.seed(2022)
random.seed(2022)
np.random.seed(2022)
self.config()

def config(self):
self.dtype = "float32"
self.shape = (2, 10, 5)

def test_create_process_group_xccl(self):
with _test_eager_guard():
paddle.set_device('custom_cpu:%d' %
paddle.distributed.ParallelEnv().dev_id)

pg = init_process_group()

x = np.random.random(self.shape).astype(self.dtype)
tensor_x = paddle.to_tensor(x)
y = np.random.random(self.shape).astype(self.dtype)
tensor_y = paddle.to_tensor(y)

sum_result = tensor_x + tensor_y
if pg.rank() == 0:
task = pg.allreduce(tensor_x)
task.wait()
# assert np.array_equal(tensor_x, sum_result)
else:
task = pg.allreduce(tensor_y)
task.wait()
# assert np.array_equal(tensor_y, sum_result)

print("test allreduce sum api ok")

x = np.random.random(self.shape).astype(self.dtype)
tensor_x = paddle.to_tensor(x)
y = np.random.random(self.shape).astype(self.dtype)
tensor_y = paddle.to_tensor(y)

max_result = paddle.maximum(tensor_x, tensor_y)

if pg.rank() == 0:
task = pg.allreduce(tensor_x, core.ReduceOp.MAX)
task.wait()
# assert np.array_equal(tensor_x, max_result)
else:
task = pg.allreduce(tensor_y, core.ReduceOp.MAX)
task.wait()
# assert np.array_equal(tensor_y, max_result)

print("test allreduce max api ok")

# test broadcast
# rank 0
x = np.random.random(self.shape).astype(self.dtype)
tensor_x = paddle.to_tensor(x)
# rank 1
y = np.random.random(self.shape).astype(self.dtype)
tensor_y = paddle.to_tensor(y)

broadcast_result = paddle.assign(tensor_x)
if pg.rank() == 0:
task = pg.broadcast(tensor_x, 0)
task.synchronize()
# paddle.fluid.core._custom_device_synchronize("custom_cpu", -1)
assert task.is_completed()
# assert np.array_equal(broadcast_result, tensor_x)
else:
task = pg.broadcast(tensor_y, 0)
task.synchronize()
# paddle.fluid.core._custom_device_synchronize("custom_cpu", -1)
assert task.is_completed()
# assert np.array_equal(broadcast_result, tensor_y)

print("test broadcast api ok")

# test barrier
# rank 0
if pg.rank() == 0:
task = pg.barrier()
task.wait()
# rank 1
else:
task = pg.barrier()
task.wait()

print("test barrier api ok\n")
return

# test allgather
# rank 0
x = np.random.random(self.shape).astype(self.dtype)
y = np.random.random(self.shape).astype(self.dtype)
tensor_x = paddle.to_tensor(x)
tensor_y = paddle.to_tensor(y)
out_shape = list(self.shape)
out_shape[0] *= 2
out = np.random.random(out_shape).astype(self.dtype)
tensor_out = paddle.to_tensor(out)
if pg.rank() == 0:
task = pg.all_gather(tensor_x, tensor_out)
task.wait()
# paddle.fluid.core._custom_device_synchronize("custom_cpu", -1)
# rank 1
else:
task = pg.all_gather(tensor_y, tensor_out)
task.wait()
# paddle.fluid.core._custom_device_synchronize("custom_cpu", -1)
out_1 = paddle.slice(tensor_out, [0], [0], [out_shape[0] // 2])
out_2 = paddle.slice(tensor_out, [0], [out_shape[0] // 2],
[out_shape[0]])
# assert np.array_equal(tensor_x, out_1)
# assert np.array_equal(tensor_y, out_2)
print("test allgather api ok\n")

# test alltoall
# rank 0
x = np.random.random(self.shape).astype(self.dtype)
y = np.random.random(self.shape).astype(self.dtype)
out1 = np.random.random(self.shape).astype(self.dtype)
out2 = np.random.random(self.shape).astype(self.dtype)
tensor_x = paddle.to_tensor(x)
tensor_y = paddle.to_tensor(y)
tensor_out1 = paddle.to_tensor(out1)
tensor_out2 = paddle.to_tensor(out2)
raw_tensor_x_2 = paddle.slice(tensor_x, [0], [self.shape[0] // 2],
[self.shape[0]])
raw_tensor_y_1 = paddle.slice(tensor_y, [0], [0],
[self.shape[0] // 2])
if pg.rank() == 0:
task = pg.alltoall(tensor_x, tensor_out1)
task.wait()
# paddle.fluid.core._custom_device_synchronize("custom_cpu", -1)
# rank 1
else:
task = pg.alltoall(tensor_y, tensor_out2)
task.wait()
# paddle.fluid.core._custom_device_synchronize("custom_cpu", -1)
out1_2 = paddle.slice(tensor_out1, [0], [self.shape[0] // 2],
[self.shape[0]])
out2_1 = paddle.slice(tensor_out2, [0], [0], [self.shape[0] // 2])
# if pg.rank() == 0:
# assert np.array_equal(out1_2.numpy(), raw_tensor_y_1.numpy())
# else:
# assert np.array_equal(out2_1, raw_tensor_x_2)
print("test alltoall api ok\n")

# test Reduce
# rank 0
x = np.random.random(self.shape).astype(self.dtype)
y = np.random.random(self.shape).astype(self.dtype)
tensor_x = paddle.to_tensor(x)
tensor_y = paddle.to_tensor(y)
sum_result = tensor_x + tensor_y
if pg.rank() == 0:
task = pg.reduce(tensor_x, 0)
task.wait()
# paddle.fluid.core._custom_device_synchronize("custom_cpu", -1)
# rank 1
else:
task = pg.reduce(tensor_y, 0)
task.wait()
# paddle.fluid.core._custom_device_synchronize("custom_cpu", -1)
# if pg.rank() == 0:
# assert np.array_equal(tensor_x, sum_result)
print("test reduce sum api ok\n")

# test Scatter
# rank 0
in_shape = list(self.shape)
in_shape[0] *= 2
x = np.random.random(in_shape).astype(self.dtype)
y = np.random.random(self.shape).astype(self.dtype)
tensor_x = paddle.to_tensor(x)
tensor_y = paddle.to_tensor(y)
if pg.rank() == 0:
task = pg.scatter(tensor_x, tensor_y, 0)
task.wait()
# paddle.fluid.core._custom_device_synchronize("custom_cpu", -1)
# rank 1
else:
task = pg.scatter(tensor_x, tensor_y, 0)
task.wait()
# paddle.fluid.core._custom_device_synchronize("custom_cpu", -1)
out1 = paddle.slice(tensor_x, [0], [0], [self.shape[0]])
out2 = paddle.slice(tensor_x, [0], [self.shape[0]],
[self.shape[0] * 2])
# if pg.rank() == 0:
# assert np.array_equal(tensor_y, out1)
# else:
# assert np.array_equal(tensor_y, out2)
print("test scatter api ok\n")


if __name__ == "__main__":
unittest.main()
Loading