Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[geometric]Move graph-related incubate api to geometric #44970

Merged
merged 20 commits into from
Aug 29, 2022
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
3 changes: 2 additions & 1 deletion paddle/phi/kernels/cpu/segment_pool_grad_kernel.cc
Original file line number Diff line number Diff line change
Expand Up @@ -25,4 +25,5 @@ PD_REGISTER_KERNEL(segment_pool_grad,
float,
double,
int,
int64_t) {}
int64_t,
phi::dtype::float16) {}
3 changes: 2 additions & 1 deletion paddle/phi/kernels/cpu/segment_pool_kernel.cc
Original file line number Diff line number Diff line change
Expand Up @@ -25,4 +25,5 @@ PD_REGISTER_KERNEL(segment_pool,
float,
double,
int,
int64_t) {}
int64_t,
phi::dtype::float16) {}
5 changes: 5 additions & 0 deletions paddle/phi/kernels/funcs/segment_pooling.cc
Original file line number Diff line number Diff line change
Expand Up @@ -145,6 +145,7 @@ class SegmentPoolGradFunctor<phi::CPUContext, T, IndexT> {
};

using CPU = phi::CPUContext;
using float16 = phi::dtype::float16;
template class SegmentPoolFunctor<CPU, float, int>;
template class SegmentPoolFunctor<CPU, float, int64_t>;
template class SegmentPoolFunctor<CPU, double, int>;
Expand All @@ -153,6 +154,8 @@ template class SegmentPoolFunctor<CPU, int, int>;
template class SegmentPoolFunctor<CPU, int, int64_t>;
template class SegmentPoolFunctor<CPU, int64_t, int>;
template class SegmentPoolFunctor<CPU, int64_t, int64_t>;
template class SegmentPoolFunctor<CPU, float16, int>;
template class SegmentPoolFunctor<CPU, float16, int64_t>;

template class SegmentPoolGradFunctor<CPU, float, int>;
template class SegmentPoolGradFunctor<CPU, float, int64_t>;
Expand All @@ -162,6 +165,8 @@ template class SegmentPoolGradFunctor<CPU, int, int>;
template class SegmentPoolGradFunctor<CPU, int, int64_t>;
template class SegmentPoolGradFunctor<CPU, int64_t, int>;
template class SegmentPoolGradFunctor<CPU, int64_t, int64_t>;
template class SegmentPoolGradFunctor<CPU, float16, int>;
template class SegmentPoolGradFunctor<CPU, float16, int64_t>;

} // namespace funcs
} // namespace phi
7 changes: 6 additions & 1 deletion paddle/phi/kernels/funcs/segment_pooling.cu
Original file line number Diff line number Diff line change
Expand Up @@ -324,7 +324,7 @@ class SegmentPoolFunctor<phi::GPUContext, T, IndexT> {
const std::string pooltype = "SUM") {
if (pooltype == "MEAN") {
// Sum the segment id num first
T DimTileSize = 8;
IndexT DimTileSize = 8;
auto input_length_size = segment_ids.numel();
auto total_stripe_count =
(input_length_size + DimTileSize - 1) / DimTileSize;
Expand Down Expand Up @@ -440,6 +440,7 @@ class SegmentPoolGradFunctor<phi::GPUContext, T, IndexT> {
};

using GPU = phi::GPUContext;
using float16 = phi::dtype::float16;
template class SegmentPoolFunctor<GPU, float, int>;
template class SegmentPoolFunctor<GPU, float, int64_t>;
template class SegmentPoolFunctor<GPU, double, int>;
Expand All @@ -448,6 +449,8 @@ template class SegmentPoolFunctor<GPU, int, int>;
template class SegmentPoolFunctor<GPU, int, int64_t>;
template class SegmentPoolFunctor<GPU, int64_t, int>;
template class SegmentPoolFunctor<GPU, int64_t, int64_t>;
template class SegmentPoolFunctor<GPU, float16, int>;
template class SegmentPoolFunctor<GPU, float16, int64_t>;

template class SegmentPoolGradFunctor<GPU, float, int>;
template class SegmentPoolGradFunctor<GPU, float, int64_t>;
Expand All @@ -457,6 +460,8 @@ template class SegmentPoolGradFunctor<GPU, int, int>;
template class SegmentPoolGradFunctor<GPU, int, int64_t>;
template class SegmentPoolGradFunctor<GPU, int64_t, int>;
template class SegmentPoolGradFunctor<GPU, int64_t, int64_t>;
template class SegmentPoolGradFunctor<GPU, float16, int>;
template class SegmentPoolGradFunctor<GPU, float16, int64_t>;

} // namespace funcs
} // namespace phi
3 changes: 2 additions & 1 deletion paddle/phi/kernels/gpu/segment_pool_grad_kernel.cu
Original file line number Diff line number Diff line change
Expand Up @@ -26,4 +26,5 @@ PD_REGISTER_KERNEL(segment_pool_grad,
float,
double,
int,
int64_t) {}
int64_t,
phi::dtype::float16) {}
3 changes: 2 additions & 1 deletion paddle/phi/kernels/gpu/segment_pool_kernel.cu
Original file line number Diff line number Diff line change
Expand Up @@ -26,4 +26,5 @@ PD_REGISTER_KERNEL(segment_pool,
float,
double,
int,
int64_t) {}
int64_t,
phi::dtype::float16) {}
2 changes: 1 addition & 1 deletion paddle/phi/kernels/impl/segment_pool_kernel_impl.h
Original file line number Diff line number Diff line change
Expand Up @@ -97,7 +97,7 @@ void SegmentKernelLaunchHelper(const Context& dev_ctx,
out->Resize({dims});
dev_ctx.template Alloc<T>(out);

T init_value = 0;
T init_value = static_cast<T>(0);
if (pooltype == "MAX") {
init_value = static_cast<T>(-FLT_MAX);
} else if (pooltype == "MIN") {
Expand Down
271 changes: 271 additions & 0 deletions python/paddle/fluid/tests/unittests/test_graph_reindex.py
Original file line number Diff line number Diff line change
Expand Up @@ -181,5 +181,276 @@ def test_reindex_result_static(self):
np.testing.assert_allclose(self.out_nodes, out_nodes_2, rtol=1e-05)


class TestGeometricGraphReindex(unittest.TestCase):

def setUp(self):
self.x = np.arange(5).astype("int64")
self.neighbors = np.random.randint(100, size=20).astype("int64")
self.count = np.array([2, 8, 4, 3, 3], dtype="int32")

# Get numpy result.
out_nodes = list(self.x)
for neighbor in self.neighbors:
if neighbor not in out_nodes:
out_nodes.append(neighbor)
self.out_nodes = np.array(out_nodes, dtype="int64")
reindex_dict = {node: ind for ind, node in enumerate(self.out_nodes)}
self.reindex_src = np.array(
[reindex_dict[node] for node in self.neighbors])
reindex_dst = []
for node, c in zip(self.x, self.count):
for i in range(c):
reindex_dst.append(reindex_dict[node])
self.reindex_dst = np.array(reindex_dst, dtype="int64")
self.num_nodes = np.max(np.concatenate([self.x, self.neighbors])) + 1

def test_reindex_result(self):
paddle.disable_static()
x = paddle.to_tensor(self.x)
neighbors = paddle.to_tensor(self.neighbors)
count = paddle.to_tensor(self.count)
value_buffer = paddle.full([self.num_nodes], -1, dtype="int32")
index_buffer = paddle.full([self.num_nodes], -1, dtype="int32")

reindex_src, reindex_dst, out_nodes = \
paddle.geometric.reindex_graph(x, neighbors, count)
np.testing.assert_allclose(self.reindex_src, reindex_src, rtol=1e-05)
np.testing.assert_allclose(self.reindex_dst, reindex_dst, rtol=1e-05)
np.testing.assert_allclose(self.out_nodes, out_nodes, rtol=1e-05)

reindex_src, reindex_dst, out_nodes = \
paddle.geometric.reindex_graph(x, neighbors, count,
value_buffer, index_buffer)
np.testing.assert_allclose(self.reindex_src, reindex_src, rtol=1e-05)
np.testing.assert_allclose(self.reindex_dst, reindex_dst, rtol=1e-05)
np.testing.assert_allclose(self.out_nodes, out_nodes, rtol=1e-05)

def test_heter_reindex_result(self):
paddle.disable_static()
x = paddle.to_tensor(self.x)
neighbors = paddle.to_tensor(self.neighbors)
neighbors = paddle.concat([neighbors, neighbors])
count = paddle.to_tensor(self.count)
count = paddle.concat([count, count])

reindex_src, reindex_dst, out_nodes = \
paddle.geometric.reindex_graph(x, neighbors, count)
np.testing.assert_allclose(self.reindex_src,
reindex_src[:self.neighbors.shape[0]],
rtol=1e-05)
np.testing.assert_allclose(self.reindex_src,
reindex_src[self.neighbors.shape[0]:],
rtol=1e-05)
np.testing.assert_allclose(self.reindex_dst,
reindex_dst[:self.neighbors.shape[0]],
rtol=1e-05)
np.testing.assert_allclose(self.reindex_dst,
reindex_dst[self.neighbors.shape[0]:],
rtol=1e-05)
np.testing.assert_allclose(self.out_nodes, out_nodes, rtol=1e-05)

def test_heter_reindex_result_v2(self):
paddle.disable_static()
x = np.arange(5).astype("int64")
neighbors1 = np.random.randint(100, size=20).astype("int64")
count1 = np.array([2, 8, 4, 3, 3], dtype="int32")
neighbors2 = np.random.randint(100, size=20).astype("int64")
count2 = np.array([4, 5, 1, 6, 4], dtype="int32")
neighbors = np.concatenate([neighbors1, neighbors2])
counts = np.concatenate([count1, count2])

# Get numpy result.
out_nodes = list(x)
for neighbor in neighbors:
if neighbor not in out_nodes:
out_nodes.append(neighbor)
out_nodes = np.array(out_nodes, dtype="int64")
reindex_dict = {node: ind for ind, node in enumerate(out_nodes)}
reindex_src = np.array([reindex_dict[node] for node in neighbors])
reindex_dst = []
for count in [count1, count2]:
for node, c in zip(x, count):
for i in range(c):
reindex_dst.append(reindex_dict[node])
reindex_dst = np.array(reindex_dst, dtype="int64")

reindex_src_, reindex_dst_, out_nodes_ = \
paddle.geometric.reindex_graph(paddle.to_tensor(x),
paddle.to_tensor(neighbors),
paddle.to_tensor(counts))
np.testing.assert_allclose(reindex_src, reindex_src_, rtol=1e-05)
np.testing.assert_allclose(reindex_dst, reindex_dst_, rtol=1e-05)
np.testing.assert_allclose(out_nodes, out_nodes_, rtol=1e-05)

def test_heter_reindex_result_v3(self):
paddle.disable_static()
x = np.arange(5).astype("int64")
neighbors1 = np.random.randint(100, size=20).astype("int64")
count1 = np.array([2, 8, 4, 3, 3], dtype="int32")
neighbors2 = np.random.randint(100, size=20).astype("int64")
count2 = np.array([4, 5, 1, 6, 4], dtype="int32")
neighbors = np.concatenate([neighbors1, neighbors2])
count = np.concatenate([count1, count2])

# Get numpy result.
out_nodes = list(x)
for neighbor in neighbors:
if neighbor not in out_nodes:
out_nodes.append(neighbor)
out_nodes = np.array(out_nodes, dtype="int64")
reindex_dict = {node: ind for ind, node in enumerate(out_nodes)}
reindex_src = np.array([reindex_dict[node] for node in neighbors])
reindex_dst = []
for count in [count1, count2]:
for node, c in zip(x, count):
for i in range(c):
reindex_dst.append(reindex_dict[node])
reindex_dst = np.array(reindex_dst, dtype="int64")

neighbors = [paddle.to_tensor(neighbors1), paddle.to_tensor(neighbors2)]
count = [paddle.to_tensor(count1), paddle.to_tensor(count2)]
reindex_src_, reindex_dst_, out_nodes_ = \
paddle.geometric.reindex_heter_graph(paddle.to_tensor(x),
neighbors, count)
np.testing.assert_allclose(reindex_src, reindex_src_, rtol=1e-05)
np.testing.assert_allclose(reindex_dst, reindex_dst_, rtol=1e-05)
np.testing.assert_allclose(out_nodes, out_nodes_, rtol=1e-05)

def test_reindex_result_static(self):
paddle.enable_static()
with paddle.static.program_guard(paddle.static.Program()):
x = paddle.static.data(name="x",
shape=self.x.shape,
dtype=self.x.dtype)
neighbors = paddle.static.data(name="neighbors",
shape=self.neighbors.shape,
dtype=self.neighbors.dtype)
count = paddle.static.data(name="count",
shape=self.count.shape,
dtype=self.count.dtype)
value_buffer = paddle.static.data(name="value_buffer",
shape=[self.num_nodes],
dtype="int32")
index_buffer = paddle.static.data(name="index_buffer",
shape=[self.num_nodes],
dtype="int32")

reindex_src_1, reindex_dst_1, out_nodes_1 = \
paddle.geometric.reindex_graph(x, neighbors, count)
reindex_src_2, reindex_dst_2, out_nodes_2 = \
paddle.geometric.reindex_graph(x, neighbors, count,
value_buffer, index_buffer)

exe = paddle.static.Executor(paddle.CPUPlace())
ret = exe.run(feed={
'x':
self.x,
'neighbors':
self.neighbors,
'count':
self.count,
'value_buffer':
np.full([self.num_nodes], -1, dtype="int32"),
'index_buffer':
np.full([self.num_nodes], -1, dtype="int32")
},
fetch_list=[
reindex_src_1, reindex_dst_1, out_nodes_1,
reindex_src_2, reindex_dst_2, out_nodes_2
])
reindex_src_1, reindex_dst_1, out_nodes_1, reindex_src_2, \
reindex_dst_2, out_nodes_2 = ret
np.testing.assert_allclose(self.reindex_src,
reindex_src_1,
rtol=1e-05)
np.testing.assert_allclose(self.reindex_dst,
reindex_dst_1,
rtol=1e-05)
np.testing.assert_allclose(self.out_nodes, out_nodes_1, rtol=1e-05)
np.testing.assert_allclose(self.reindex_src,
reindex_src_2,
rtol=1e-05)
np.testing.assert_allclose(self.reindex_dst,
reindex_dst_2,
rtol=1e-05)
np.testing.assert_allclose(self.out_nodes, out_nodes_2, rtol=1e-05)

def test_heter_reindex_result_static(self):
paddle.enable_static()
np_x = np.arange(5).astype("int64")
np_neighbors1 = np.random.randint(100, size=20).astype("int64")
np_count1 = np.array([2, 8, 4, 3, 3], dtype="int32")
np_neighbors2 = np.random.randint(100, size=20).astype("int64")
np_count2 = np.array([4, 5, 1, 6, 4], dtype="int32")
np_neighbors = np.concatenate([np_neighbors1, np_neighbors2])
np_count = np.concatenate([np_count1, np_count2])

# Get numpy result.
out_nodes = list(np_x)
for neighbor in np_neighbors:
if neighbor not in out_nodes:
out_nodes.append(neighbor)
out_nodes = np.array(out_nodes, dtype="int64")
reindex_dict = {node: ind for ind, node in enumerate(out_nodes)}
reindex_src = np.array([reindex_dict[node] for node in np_neighbors])
reindex_dst = []
for count in [np_count1, np_count2]:
for node, c in zip(np_x, count):
for i in range(c):
reindex_dst.append(reindex_dict[node])
reindex_dst = np.array(reindex_dst, dtype="int64")

with paddle.static.program_guard(paddle.static.Program()):
x = paddle.static.data(name="x", shape=[5], dtype="int64")
neighbors1 = paddle.static.data(name="neighbors1",
shape=[20],
dtype="int64")
count1 = paddle.static.data(name="count1", shape=[5], dtype="int32")
neighbors2 = paddle.static.data(name="neighbors2",
shape=[20],
dtype="int64")
count2 = paddle.static.data(name="count2", shape=[5], dtype="int32")
value_buffer = paddle.static.data(name="value_buffer",
shape=[5],
dtype="int32")
index_buffer = paddle.static.data(name="index_buffer",
shape=[5],
dtype="int32")

reindex_src_1, reindex_dst_1, out_nodes_1 = \
paddle.geometric.reindex_heter_graph(x,
[neighbors1, neighbors2],
[count1, count2])
reindex_src_2, reindex_dst_2, out_nodes_2 = \
paddle.geometric.reindex_heter_graph(x,
[neighbors1, neighbors2],
[count1, count2],
value_buffer, index_buffer)

exe = paddle.static.Executor(paddle.CPUPlace())
ret = exe.run(feed={
'x': np_x,
'neighbors1': np_neighbors1,
'count1': np_count1,
'neighbors2': np_neighbors2,
'count2': np_count2,
'value_buffer': np.full([5], -1, dtype="int32"),
'index_buffer': np.full([5], -1, dtype="int32")
},
fetch_list=[
reindex_src_1, reindex_dst_1, out_nodes_1,
reindex_src_2, reindex_dst_2, out_nodes_2
])

reindex_src_1, reindex_dst_1, out_nodes_1, reindex_src_2, \
reindex_dst_2, out_nodes_2 = ret
np.testing.assert_allclose(reindex_src, reindex_src_1, rtol=1e-05)
np.testing.assert_allclose(reindex_dst, reindex_dst_1, rtol=1e-05)
np.testing.assert_allclose(out_nodes, out_nodes_1, rtol=1e-05)
np.testing.assert_allclose(reindex_src, reindex_src_2, rtol=1e-05)
np.testing.assert_allclose(reindex_dst, reindex_dst_2, rtol=1e-05)
np.testing.assert_allclose(out_nodes, out_nodes_2, rtol=1e-05)


if __name__ == "__main__":
unittest.main()
Loading