-
Notifications
You must be signed in to change notification settings - Fork 5.6k
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
【Hackathon No.21】为 Paddle 新增 paddle.incubate.sparse.transpose 稀疏 API #45849
Merged
Merged
Changes from all commits
Commits
Show all changes
40 commits
Select commit
Hold shift + click to select a range
9f403dc
add sparse transpose op
zrr1999 2275d63
add sparse transpose op
zrr1999 c6c33ff
Merge branch 'develop' into sparse_transpose
zrr1999 f36cc0e
complete 2D CSR sparse transpose op
zrr1999 5158792
add more unitests
zrr1999 10f1682
fix bugs
zrr1999 1a7684a
complete 3D CSR sparse transpose op
zrr1999 1bcdfac
fix bugs
zrr1999 553a792
add grad
zrr1999 744667a
fix bugs
zrr1999 0135acc
Merge branch 'develop' into sparse_transpose
zrr1999 c6060b9
optimize unittest
zrr1999 4d0e052
fix bugs
zrr1999 129a2f0
add cuda impl
zrr1999 2116140
fix bugs
zrr1999 8116fe7
Merge branch 'develop' into sparse_transpose
zrr1999 2b156e3
add ops
zrr1999 00f18ed
Merge branch 'develop' into sparse_transpose
zrr1999 8d1e718
add ops
zrr1999 0c68706
reduce shape
zrr1999 1592b92
fix bugs
zrr1999 70a4b79
replace dims to perm
zrr1999 2053889
add hip impl
zrr1999 152d0b8
replace dims to perm
zrr1999 ecaea58
move transpose op to transpose file
zrr1999 c92e076
restore unary file
zrr1999 c5ec3fb
modified docs
zrr1999 b7090dd
Merge branch 'PaddlePaddle:develop' into sparse_transpose
zrr1999 fb59429
add infer_meta
zrr1999 003c044
fix bugs
zrr1999 5cc042c
optimize cuda
zrr1999 acdd53f
optimize cuda
zrr1999 3884ff0
optimize cuda
zrr1999 43be57e
share memory
zrr1999 046607d
share memory
zrr1999 64b0343
Merge branch 'develop' into sparse_transpose
zrr1999 2157b31
share memory
zrr1999 8bf4799
remove parameter x of grad function
zrr1999 535cb46
fix bugs
zrr1999 6522826
fix bugs
zrr1999 File filter
Filter by extension
Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,78 @@ | ||
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. | ||
// | ||
// Licensed under the Apache License, Version 2.0 (the "License"); | ||
// you may not use this file except in compliance with the License. | ||
// You may obtain a copy of the License at | ||
// | ||
// http://www.apache.org/licenses/LICENSE-2.0 | ||
// | ||
// Unless required by applicable law or agreed to in writing, software | ||
// distributed under the License is distributed on an "AS IS" BASIS, | ||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
// See the License for the specific language governing permissions and | ||
// limitations under the License. | ||
|
||
#include "paddle/phi/kernels/sparse/unary_grad_kernel.h" | ||
#include "paddle/phi/kernels/sparse/unary_kernel.h" | ||
|
||
#include "paddle/phi/backends/cpu/cpu_context.h" | ||
#include "paddle/phi/core/kernel_registry.h" | ||
#include "paddle/phi/kernels/sparse/empty_kernel.h" | ||
#include "paddle/phi/kernels/sparse/impl/unary_grad_kernel_impl.h" | ||
|
||
namespace phi { | ||
namespace sparse { | ||
|
||
std::vector<int> get_cpu_grad_perm(std::vector<int> perm) { | ||
std::vector<int> grad_perm(perm.size()); | ||
for (unsigned int i = 0; i < perm.size(); ++i) { | ||
grad_perm[perm[i]] = i; | ||
} | ||
return grad_perm; | ||
} | ||
|
||
template <typename T, typename Context> | ||
void TransposeCooGradKernel(const Context& dev_ctx, | ||
const SparseCooTensor& dout, | ||
const std::vector<int>& perm, | ||
SparseCooTensor* dx) { | ||
std::vector<int> grad_perm = get_cpu_grad_perm(perm); | ||
TransposeCooKernel<T, Context>(dev_ctx, dout, grad_perm, dx); | ||
} | ||
|
||
template <typename T, typename Context> | ||
void TransposeCsrGradKernel(const Context& dev_ctx, | ||
const SparseCsrTensor& dout, | ||
const std::vector<int>& perm, | ||
SparseCsrTensor* dx) { | ||
std::vector<int> grad_perm = get_cpu_grad_perm(perm); | ||
TransposeCsrKernel<T, Context>(dev_ctx, dout, grad_perm, dx); | ||
} | ||
} // namespace sparse | ||
} // namespace phi | ||
|
||
PD_REGISTER_KERNEL(transpose_coo_grad, | ||
CPU, | ||
ALL_LAYOUT, | ||
phi::sparse::TransposeCooGradKernel, | ||
float, | ||
double, | ||
int8_t, | ||
uint8_t, | ||
int16_t, | ||
int, | ||
int64_t, | ||
bool) {} | ||
|
||
PD_REGISTER_KERNEL(transpose_csr_grad, | ||
CPU, | ||
ALL_LAYOUT, | ||
phi::sparse::TransposeCsrGradKernel, | ||
float, | ||
double, | ||
int8_t, | ||
uint8_t, | ||
int16_t, | ||
int, | ||
int64_t, | ||
bool) {} |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,231 @@ | ||
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. | ||
// | ||
// Licensed under the Apache License, Version 2.0 (the "License"); | ||
// you may not use this file except in compliance with the License. | ||
// You may obtain a copy of the License at | ||
// | ||
// http://www.apache.org/licenses/LICENSE-2.0 | ||
// | ||
// Unless required by applicable law or agreed to in writing, software | ||
// distributed under the License is distributed on an "AS IS" BASIS, | ||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
// See the License for the specific language governing permissions and | ||
// limitations under the License. | ||
|
||
#include "paddle/phi/kernels/sparse/unary_kernel.h" | ||
|
||
#include "paddle/phi/backends/cpu/cpu_context.h" | ||
#include "paddle/phi/core/kernel_registry.h" | ||
#include "paddle/phi/kernels/empty_kernel.h" | ||
#include "paddle/phi/kernels/funcs/eigen/common.h" | ||
#include "paddle/phi/kernels/funcs/eigen/eigen_function.h" | ||
#include "paddle/phi/kernels/sparse/empty_kernel.h" | ||
|
||
namespace phi { | ||
namespace sparse { | ||
|
||
template <typename T, typename Context> | ||
void TransposeCooKernel(const Context& dev_ctx, | ||
const SparseCooTensor& x, | ||
const std::vector<int>& perm, | ||
SparseCooTensor* out) { | ||
// create out sparse tensor | ||
int64_t x_nnz = x.nnz(); | ||
DDim out_dims = x.dims().transpose(perm); | ||
DenseTensor out_indices = EmptyLike<int64_t, Context>(dev_ctx, x.indices()); | ||
DenseTensor out_values(x.values()); | ||
out->SetMember(out_indices, out_values, out_dims, x.coalesced()); | ||
|
||
// compute values of indices | ||
const DenseTensor& x_indices = x.indices(); | ||
const auto* x_indices_data = x_indices.data<int64_t>(); | ||
auto* out_indices_data = out_indices.data<int64_t>(); | ||
for (unsigned int i = 0; i < perm.size(); ++i) { | ||
for (int64_t j = 0; j < x_nnz; ++j) { | ||
out_indices_data[j + i * x_nnz] = x_indices_data[j + perm[i] * x_nnz]; | ||
} | ||
} | ||
} | ||
|
||
template <typename T, typename Context> | ||
void TransposeCsrKernel(const Context& dev_ctx, | ||
const SparseCsrTensor& x, | ||
const std::vector<int>& perm, | ||
SparseCsrTensor* out) { | ||
unsigned int n_dim = perm.size(); | ||
const DenseTensor& x_crows = x.crows(); | ||
const DenseTensor& x_cols = x.cols(); | ||
const DenseTensor& x_values = x.values(); | ||
DenseTensor out_crows, out_cols, out_values; | ||
// return a copy of x | ||
if (perm[0] == 0 && perm[1] == 1 && (n_dim == 2 || perm[2] == 2)) { | ||
out_crows = x_crows; | ||
out_cols = x_cols; | ||
out_values = x_values; | ||
out->SetMember(out_crows, out_cols, out_values, x.dims()); | ||
return; | ||
} | ||
// create out sparse tensor | ||
DDim out_dims = x.dims().transpose(perm); | ||
if (n_dim == 2) { | ||
out_crows = Empty<int64_t, Context>(dev_ctx, {out_dims[0] + 1}); | ||
} else { | ||
out_crows = | ||
Empty<int64_t, Context>(dev_ctx, {out_dims[0] * (out_dims[1] + 1)}); | ||
} | ||
out_cols = EmptyLike<int64_t, Context>(dev_ctx, x.cols()); | ||
out_values = EmptyLike<T, Context>(dev_ctx, x.values()); | ||
out->SetMember(out_crows, out_cols, out_values, out_dims); | ||
// transpose by two stages | ||
if (perm[0] == 1 && perm[1] == 2) { // perm == {1, 2, 0} | ||
SparseCsrTensor temp; | ||
TransposeCsrKernel<T, Context>(dev_ctx, x, {1, 0, 2}, &temp); | ||
TransposeCsrKernel<T, Context>(dev_ctx, temp, {0, 2, 1}, out); | ||
return; | ||
} else if (perm[0] == 2 && perm[1] == 0) { // perm == {2, 0, 1} | ||
SparseCsrTensor temp; | ||
TransposeCsrKernel<T, Context>(dev_ctx, x, {0, 2, 1}, &temp); | ||
TransposeCsrKernel<T, Context>(dev_ctx, temp, {1, 0, 2}, out); | ||
return; | ||
} else if (perm[0] == 2 && perm[1] == 1) { // perm == {2, 1, 0} | ||
SparseCsrTensor temp; | ||
TransposeCsrKernel<T, Context>(dev_ctx, x, {1, 0, 2}, &temp); | ||
TransposeCsrKernel<T, Context>(dev_ctx, temp, {2, 0, 1}, out); | ||
return; | ||
} | ||
|
||
int64_t* out_crows_data = out_crows.data<int64_t>(); | ||
int64_t* out_cols_data = out_cols.data<int64_t>(); | ||
T* out_values_data = out_values.data<T>(); | ||
const int64_t* x_crows_data = x_crows.data<int64_t>(); | ||
const int64_t* x_cols_data = x_cols.data<int64_t>(); | ||
const T* x_values_data = x_values.data<T>(); | ||
|
||
int64_t x_nnz = x.nnz(); | ||
if (n_dim == 2) { // perm == {1, 0} | ||
// compute out_crows_data by x_cols_data | ||
for (int i = 0; i < out_dims[0]; ++i) { | ||
out_crows_data[i] = 0; | ||
} | ||
for (int i = 0; i < x_nnz; ++i) { | ||
int j = x_cols_data[i]; | ||
out_crows_data[j + 1]++; | ||
} | ||
out_crows_data[out_dims[0]] = x_nnz; | ||
for (int i = 1; i < out_dims[0]; ++i) { | ||
out_crows_data[i] += out_crows_data[i - 1]; | ||
} | ||
// compute out_cols_data and out_values_data by out_crows_data and x | ||
std::unordered_map<int64_t, int> cols_offset; | ||
for (int i = 0; i < x.dims()[0]; ++i) { | ||
int64_t start = x_crows_data[i]; | ||
int64_t end = x_crows_data[i + 1]; | ||
for (int64_t j = start; j < end; ++j) { | ||
int64_t x_cols_j = x_cols_data[j]; | ||
int64_t jjj = out_crows_data[x_cols_j]; | ||
if (cols_offset.count(jjj)) { | ||
cols_offset[jjj]++; | ||
} else { | ||
cols_offset[jjj] = 0; | ||
} | ||
int64_t jjj_offset = jjj + cols_offset[jjj]; | ||
out_cols_data[jjj_offset] = i; | ||
out_values_data[jjj_offset] = x_values_data[j]; | ||
} | ||
} | ||
} else { // n_dim == 3 | ||
int out_n_rows = out_dims[1]; | ||
int x_n_rows = x.dims()[1]; | ||
for (int k = 0; k < out_dims[0]; ++k) { | ||
if (perm[0] == 0) { // perm == {0, 2, 1} | ||
// compute out_crows_data by x_cols_data | ||
for (int i = 0; i < out_n_rows; ++i) { | ||
out_crows_data[i] = 0; | ||
} | ||
for (int i = 0; i < x_crows_data[x_n_rows]; ++i) { | ||
int j = x_cols_data[i]; | ||
out_crows_data[j + 1]++; | ||
} | ||
out_crows_data[out_n_rows] = x_crows_data[x_n_rows]; | ||
for (int i = 1; i < out_n_rows; ++i) { | ||
out_crows_data[i] += out_crows_data[i - 1]; | ||
} | ||
// compute out_cols_data and out_values_data by out_crows_data and x | ||
std::unordered_map<int64_t, int> cols_offset; | ||
for (int i = 0; i < x_n_rows; ++i) { | ||
int64_t start = x_crows_data[i]; | ||
int64_t end = x_crows_data[i + 1]; | ||
for (int64_t j = start; j < end; ++j) { | ||
int64_t x_cols_j = x_cols_data[j]; | ||
int64_t jjj = out_crows_data[x_cols_j]; | ||
if (cols_offset.count(jjj)) { | ||
cols_offset[jjj]++; | ||
} else { | ||
cols_offset[jjj] = 0; | ||
} | ||
int64_t jjj_offset = jjj + cols_offset[jjj]; | ||
out_cols_data[jjj_offset] = i; | ||
out_values_data[jjj_offset] = x_values_data[j]; | ||
} | ||
} | ||
// x offset | ||
x_cols_data += x_crows_data[x_n_rows]; | ||
x_values_data += x_crows_data[x_n_rows]; | ||
x_crows_data += x_n_rows + 1; | ||
} else if (perm[0] == 1 && perm[1] == 0) { // perm == {1, 0, 2} | ||
for (int i = 0; i < out_n_rows; ++i) { | ||
out_crows_data[i] = 0; | ||
} | ||
int x_cols_offset = 0; | ||
int out_cols_index = 0; | ||
for (int i = 0; i < x.dims()[0]; ++i) { | ||
int x_crows_index = i * (x_n_rows + 1); | ||
int start = x_crows_data[x_crows_index + k]; | ||
int end = x_crows_data[x_crows_index + 1 + k]; | ||
out_crows_data[i + 1] = end - start; | ||
for (int j = start; j < end; ++j) { | ||
out_cols_data[out_cols_index] = x_cols_data[x_cols_offset + j]; | ||
out_values_data[out_cols_index] = x_values_data[x_cols_offset + j]; | ||
out_cols_index++; | ||
} | ||
x_cols_offset += x_crows_data[x_crows_index + x_n_rows]; | ||
} | ||
for (int i = 1; i <= out_n_rows; ++i) { | ||
out_crows_data[i] += out_crows_data[i - 1]; | ||
} | ||
} | ||
// out offset | ||
out_cols_data += out_crows_data[out_n_rows]; | ||
out_values_data += out_crows_data[out_n_rows]; | ||
out_crows_data += out_n_rows + 1; | ||
} | ||
} | ||
} | ||
} // namespace sparse | ||
} // namespace phi | ||
|
||
PD_REGISTER_KERNEL(transpose_coo, | ||
CPU, | ||
ALL_LAYOUT, | ||
phi::sparse::TransposeCooKernel, | ||
float, | ||
double, | ||
int8_t, | ||
uint8_t, | ||
int16_t, | ||
int, | ||
int64_t, | ||
bool) {} | ||
|
||
PD_REGISTER_KERNEL(transpose_csr, | ||
CPU, | ||
ALL_LAYOUT, | ||
phi::sparse::TransposeCsrKernel, | ||
float, | ||
double, | ||
int8_t, | ||
uint8_t, | ||
int16_t, | ||
int, | ||
int64_t, | ||
bool) {} |
Oops, something went wrong.
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
I think the used " func : TransposeInferMeta" is actually the one for dense tensor. But the TransposeInferMeta for dense tensor is also applicable to sparse tensor. "func : TransposeGradInferMeta" has the same situation. So I submit a PR to delete maybe unused code in paddle\phi\infermeta\sparse\unary.h
#46844