Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[dygraph pp] all sync for allgather partial #46483

Merged
merged 4 commits into from
Sep 28, 2022
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Original file line number Diff line number Diff line change
Expand Up @@ -165,17 +165,15 @@ def _is_valid_send_recv_partial(tensor, mp_degree):

def _partial_send_op(tensor, group, use_calc_stream, ring_id, dst, nranks,
rank_id):
dst_rank_in_group = dst if group is None else group.get_group_rank(dst)
if _in_legacy_dygraph():
return _legacy_C_ops.partial_send(tensor.detach(), 'use_calc_stream',
use_calc_stream, 'ring_id', ring_id,
'peer', dst_rank_in_group, 'num',
nranks, 'id', rank_id)
'peer', dst, 'num', nranks, 'id',
rank_id)
elif in_dygraph_mode():
group = paddle.distributed.collective._get_default_group(
) if group is None else group
return group.process_group.send_partial(tensor, dst_rank_in_group,
nranks, rank_id)
return group.process_group.send_partial(tensor, dst, nranks, rank_id)


def send_partial(tensor,
Expand All @@ -189,13 +187,12 @@ def send_partial(tensor,
return
ring_id = 0 if group is None else group.id

dst_rank = _hcg._get_p2p_next_rank(
) if dst == 1 else _hcg._get_p2p_prev_rank()

if _is_valid_send_recv_partial(tensor, nranks):
return _partial_send_op(tensor, group, use_calc_stream, ring_id,
dst_rank, nranks, rank_id)
return _partial_send_op(tensor, group, use_calc_stream, ring_id, dst,
nranks, rank_id)
else:
dst_rank = _hcg._get_p2p_next_rank(
) if dst == 1 else _hcg._get_p2p_prev_rank()
if _in_legacy_dygraph():
send_op = paddle.distributed.send
elif in_dygraph_mode():
Expand All @@ -205,23 +202,22 @@ def send_partial(tensor,

def _partial_recv_op(tensor, group, use_calc_stream, ring_id, src, nranks,
rank_id):
src_rank_in_group = src if group is None else group.get_group_rank(src)
if _in_legacy_dygraph():
assert use_calc_stream
return _legacy_C_ops.partial_recv(tensor.detach(), 'use_calc_stream',
use_calc_stream, 'ring_id', ring_id,
'peer', src_rank_in_group, 'num',
nranks, 'id', rank_id, 'dtype',
tensor.dtype, 'out_shape',
tensor.shape)
'peer', src, 'num', nranks, 'id',
rank_id, 'dtype', tensor.dtype,
'out_shape', tensor.shape)
elif in_dygraph_mode():
group = paddle.distributed.collective._get_default_group(
) if group is None else group
task = group.process_group.recv_partial(tensor, src_rank_in_group,
nranks, rank_id)
task = group.process_group.recv_partial(tensor, src, nranks, rank_id)
if use_calc_stream:
task.wait()
return task
return None
else:
return task


def recv_partial(tensor,
Expand All @@ -235,13 +231,12 @@ def recv_partial(tensor,
return
ring_id = 0 if group is None else group.id

src_rank = _hcg._get_p2p_prev_rank(
) if src == 0 else _hcg._get_p2p_next_rank()

if _is_valid_send_recv_partial(tensor, nranks):
return _partial_recv_op(tensor, group, use_calc_stream, ring_id,
src_rank, nranks, rank_id)
return _partial_recv_op(tensor, group, use_calc_stream, ring_id, src,
nranks, rank_id)
else:
src_rank = _hcg._get_p2p_prev_rank(
) if src == 0 else _hcg._get_p2p_next_rank()
if _in_legacy_dygraph() or use_calc_stream:
recv_op = paddle.distributed.recv
elif in_dygraph_mode():
Expand All @@ -260,8 +255,13 @@ def _partial_allgather_op(tensor, group, use_calc_stream, ring_id, nranks,
elif in_dygraph_mode():
group = paddle.distributed.collective._get_default_group(
) if group is None else group
return group.process_group.all_gather_partial(tensor, tensor, nranks,
task = group.process_group.all_gather_partial(tensor, tensor, nranks,
rank_id)
if use_calc_stream:
task.wait()
return None
else:
return task


def allgather_partial(tensor,
Expand All @@ -270,9 +270,9 @@ def allgather_partial(tensor,
group=None,
use_calc_stream=True):
if not _is_valid_send_recv_partial(tensor, nranks):
return None
return tensor
if group is not None and not group.is_member():
return None
return
ring_id = 0 if group is None else group.id

return _partial_allgather_op(tensor, group, use_calc_stream, ring_id,
Expand Down Expand Up @@ -335,17 +335,15 @@ def _p2p_helper(tensor_send_next,
if tensor_send_prev is not None:
if isinstance(tensor_send_prev, tuple):
for d in tensor_send_prev:
if _in_legacy_dygraph():
paddle.distributed.wait(d, use_calc_stream=True)
paddle.distributed.wait(d, use_calc_stream=True)
send_partial(d,
dst=0,
nranks=mp_degree,
rank_id=mp_rank,
group=_hcg.send_prev_group,
use_calc_stream=False)
else:
if _in_legacy_dygraph():
paddle.distributed.wait(tensor_send_prev, use_calc_stream=True)
paddle.distributed.wait(tensor_send_prev, use_calc_stream=True)
send_partial(tensor_send_prev,
dst=0,
nranks=mp_degree,
Expand All @@ -356,36 +354,48 @@ def _p2p_helper(tensor_send_next,
if tensor_recv_prev is not None:
if isinstance(tensor_recv_prev, tuple):
for d in tensor_recv_prev:
tasks.append(
recv_partial(d,
src=0,
nranks=mp_degree,
rank_id=mp_rank,
group=_hcg.recv_prev_group,
use_calc_stream=sync_recv))
task = recv_partial(d,
src=0,
nranks=mp_degree,
rank_id=mp_rank,
group=_hcg.recv_prev_group,
use_calc_stream=sync_recv)
if sync_recv:
allgather_partial(d,
nranks=mp_degree,
rank_id=mp_rank,
group=mp_group,
use_calc_stream=True)
else:
tasks.append(task)
else:
tasks.append(
recv_partial(tensor_recv_prev,
src=0,
nranks=mp_degree,
rank_id=mp_rank,
group=_hcg.recv_prev_group,
use_calc_stream=sync_recv))
task = recv_partial(tensor_recv_prev,
src=0,
nranks=mp_degree,
rank_id=mp_rank,
group=_hcg.recv_prev_group,
use_calc_stream=sync_recv)
if sync_recv:
allgather_partial(tensor_recv_prev,
nranks=mp_degree,
rank_id=mp_rank,
group=mp_group,
use_calc_stream=True)
else:
tasks.append(task)

if tensor_send_next is not None:
if isinstance(tensor_send_next, tuple):
for d in tensor_send_next:
if _in_legacy_dygraph():
paddle.distributed.wait(d, use_calc_stream=True)
paddle.distributed.wait(d, use_calc_stream=True)
send_partial(d,
dst=1,
nranks=mp_degree,
rank_id=mp_rank,
group=_hcg.send_next_group,
use_calc_stream=False)
else:
if _in_legacy_dygraph():
paddle.distributed.wait(tensor_send_next, use_calc_stream=True)
paddle.distributed.wait(tensor_send_next, use_calc_stream=True)
send_partial(tensor_send_next,
dst=1,
nranks=mp_degree,
Expand All @@ -396,57 +406,64 @@ def _p2p_helper(tensor_send_next,
if tensor_recv_next is not None:
if isinstance(tensor_recv_next, tuple):
for d in tensor_recv_next:
tasks.append(
recv_partial(d,
src=1,
nranks=mp_degree,
rank_id=mp_rank,
group=_hcg.recv_next_group,
use_calc_stream=sync_recv))

else:
tasks.append(
recv_partial(tensor_recv_next,
src=1,
nranks=mp_degree,
rank_id=mp_rank,
group=_hcg.recv_next_group,
use_calc_stream=sync_recv))
task = recv_partial(d,
src=1,
nranks=mp_degree,
rank_id=mp_rank,
group=_hcg.recv_next_group,
use_calc_stream=sync_recv)
if sync_recv:
allgather_partial(d,
nranks=mp_degree,
rank_id=mp_rank,
group=mp_group,
use_calc_stream=True)
else:
tasks.append(task)

if not sync_recv and in_dygraph_mode():
# wait irecv tasks in eager dygraph mode with new comm library
for task in tasks:
assert task is not None
task.wait()

tensors_for_all_gather = []
if tensor_recv_prev is not None:
if isinstance(tensor_recv_prev, tuple):
for d in tensor_recv_prev:
tensors_for_all_gather.append(d)
else:
tensors_for_all_gather.append(tensor_recv_prev)
if tensor_recv_next is not None:
if isinstance(tensor_recv_next, tuple):
for d in tensor_recv_next:
tensors_for_all_gather.append(d)
else:
tensors_for_all_gather.append(tensor_recv_next)
task = recv_partial(tensor_recv_next,
src=1,
nranks=mp_degree,
rank_id=mp_rank,
group=_hcg.recv_next_group,
use_calc_stream=sync_recv)
if sync_recv:
allgather_partial(tensor_recv_next,
nranks=mp_degree,
rank_id=mp_rank,
group=mp_group,
use_calc_stream=True)
else:
tasks.append(task)

if not sync_recv:
if in_dygraph_mode():
# wait irecv tasks in eager dygraph mode with new comm library
for task in tasks:
assert task is not None
task.wait()

tasks = []
for tensor in tensors_for_all_gather:
tasks.append(
tensors_for_all_gather = []
if tensor_recv_prev is not None:
if isinstance(tensor_recv_prev, tuple):
for d in tensor_recv_prev:
tensors_for_all_gather.append(d)
else:
tensors_for_all_gather.append(tensor_recv_prev)
if tensor_recv_next is not None:
if isinstance(tensor_recv_next, tuple):
for d in tensor_recv_next:
tensors_for_all_gather.append(d)
else:
tensors_for_all_gather.append(tensor_recv_next)

for tensor in tensors_for_all_gather:
allgather_partial(tensor,
nranks=mp_degree,
rank_id=mp_rank,
group=mp_group,
use_calc_stream=True))

if in_dygraph_mode():
for task in tasks:
# wait partial all gather tasks
if task is not None:
task.wait()
use_calc_stream=True)

return tensor_recv_prev, tensor_recv_next

Expand Down