Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[PHI] Migrate squeeze and squeeze_grad kernels #48634

Merged
merged 7 commits into from
Dec 7, 2022
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
39 changes: 3 additions & 36 deletions paddle/fluid/operators/mkldnn/reshape_mkldnn_op.cc
Original file line number Diff line number Diff line change
Expand Up @@ -21,7 +21,6 @@ enum class ReshapeKernelOpName {
reshape,
reshape2,
squeeze,
squeeze2,
flatten,
flatten2,
};
Expand Down Expand Up @@ -106,9 +105,6 @@ class ReshapeMKLDNNKernel : public framework::OpKernel<T> {
case ReshapeKernelOpName::squeeze:
InferShapeSqueezeOp(ctx, x_dims, out_dims);
break;
case ReshapeKernelOpName::squeeze2:
InferShapeSqueeze2Op(ctx, x_dims, out_dims);
break;
case ReshapeKernelOpName::flatten:
InferShapeFlattenOp(ctx, x_dims, out_dims);
break;
Expand Down Expand Up @@ -172,16 +168,6 @@ class ReshapeMKLDNNKernel : public framework::OpKernel<T> {
out_dims = GetOutputShape(axes, x_dims, true);
}

void InferShapeSqueeze2Op(const framework::ExecutionContext& ctx,
framework::DDim& x_dims, // NOLINT
framework::DDim& out_dims) const { // NOLINT
auto* out = ctx.Output<phi::DenseTensor>("Out");
auto* xshape = ctx.Output<phi::DenseTensor>("XShape");
auto xshape_dims = xshape->dims();
x_dims = phi::slice_ddim(xshape_dims, 1, xshape_dims.size());
out_dims = out->dims();
}

void InferShapeFlattenOp(const framework::ExecutionContext& ctx,
framework::DDim& x_dims, // NOLINT
framework::DDim& out_dims) const { // NOLINT
Expand Down Expand Up @@ -342,19 +328,16 @@ class ReshapeGradMKLDNNKernel : public ReshapeMKLDNNKernel<T, op_name> {
InferShapeReshapeSqueezeGradOp(ctx, x_dims);
break;
case ReshapeKernelOpName::reshape2:
InferShapeReshape2Squeeze2Flatten2GradOp(ctx, x_dims);
InferShapeReshape2Flatten2GradOp(ctx, x_dims);
break;
case ReshapeKernelOpName::squeeze:
InferShapeReshapeSqueezeGradOp(ctx, x_dims);
break;
case ReshapeKernelOpName::squeeze2:
InferShapeReshape2Squeeze2Flatten2GradOp(ctx, x_dims);
break;
case ReshapeKernelOpName::flatten:
InferShapeFlattenGradOp(ctx, x_dims);
break;
case ReshapeKernelOpName::flatten2:
InferShapeReshape2Squeeze2Flatten2GradOp(ctx, x_dims);
InferShapeReshape2Flatten2GradOp(ctx, x_dims);
break;
default:
PADDLE_THROW(paddle::platform::errors::OutOfRange(
Expand All @@ -369,7 +352,7 @@ class ReshapeGradMKLDNNKernel : public ReshapeMKLDNNKernel<T, op_name> {
dx_dims = dx->dims();
}

void InferShapeReshape2Squeeze2Flatten2GradOp(
void InferShapeReshape2Flatten2GradOp(
const framework::ExecutionContext& ctx,
framework::DDim& dx_dims) const { // NOLINT
auto xshape_dims = ctx.Input<phi::DenseTensor>("XShape")->dims();
Expand Down Expand Up @@ -401,22 +384,6 @@ REGISTER_OP_KERNEL(
ops::ReshapeGradMKLDNNKernel<paddle::platform::bfloat16,
ReshapeKernelOpName::squeeze>);

REGISTER_OP_KERNEL(
squeeze2,
MKLDNN,
paddle::platform::CPUPlace,
ops::ReshapeMKLDNNKernel<float, ReshapeKernelOpName::squeeze2>,
ops::ReshapeMKLDNNKernel<paddle::platform::bfloat16,
ReshapeKernelOpName::squeeze2>);

REGISTER_OP_KERNEL(
squeeze2_grad,
MKLDNN,
paddle::platform::CPUPlace,
ops::ReshapeGradMKLDNNKernel<float, ReshapeKernelOpName::squeeze2>,
ops::ReshapeGradMKLDNNKernel<paddle::platform::bfloat16,
ReshapeKernelOpName::squeeze2>);

REGISTER_OP_KERNEL(
reshape,
MKLDNN,
Expand Down
59 changes: 59 additions & 0 deletions paddle/phi/kernels/onednn/squeeze_grad_kernel.cc
Original file line number Diff line number Diff line change
@@ -0,0 +1,59 @@
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/phi/kernels/squeeze_grad_kernel.h"

#include "paddle/phi/backends/onednn/onednn_reuse.h"
#include "paddle/phi/core/kernel_registry.h"

namespace phi {

template <typename T, typename Context>
void SqueezeGradKernel(const Context& dev_ctx,
const DenseTensor& xshape,
const DenseTensor& dout,
const IntArray& axes,
DenseTensor* dx) {
auto dout_vec_dims = vectorize(dout.dims());
auto dout_type = funcs::ToOneDNNDataType(dout.dtype());

funcs::ReorderOneDNNHandler reorder_handler(
dout_vec_dims, dout.dtype(), dout_type, dev_ctx.GetEngine());

auto reorder_src_memory_p = reorder_handler.AcquireSrcMemory(
dout.mem_desc(), funcs::to_void_cast(dout.data<T>()));
auto reorder_dst_memory_p = reorder_handler.AcquireDstMemory(
dx,
funcs::GetPlainOneDNNFormat(dout_vec_dims.size()),
dev_ctx.GetPlace());
auto reorder_p = reorder_handler.AcquireReorder(reorder_dst_memory_p,
reorder_src_memory_p);

auto& astream = OneDNNContext::tls().get_stream();
reorder_p->execute(astream, *reorder_src_memory_p, *reorder_dst_memory_p);
astream.wait();

auto dx_dims = slice_ddim(xshape.dims(), 1, xshape.dims().size());
dx->Resize(dx_dims);
reorder_dst_memory_p->get_desc().reshape(vectorize(dx_dims));
}

} // namespace phi

PD_REGISTER_KERNEL(squeeze_grad,
OneDNN,
ONEDNN,
phi::SqueezeGradKernel,
float,
phi::dtype::bfloat16) {}
85 changes: 85 additions & 0 deletions paddle/phi/kernels/onednn/squeeze_kernel.cc
Original file line number Diff line number Diff line change
@@ -0,0 +1,85 @@
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/phi/kernels/squeeze_kernel.h"

#include "paddle/phi/backends/onednn/onednn_reuse.h"
#include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/kernels/funcs/unsqueeze.h"

namespace phi {

template <typename T, typename Context>
void ExecuteSqueeze(const Context& dev_ctx,
const DenseTensor& x,
const DDim& x_dims,
const DDim& out_dims,
DenseTensor* out) {
auto x_vec_dims = vectorize(x_dims);

funcs::ReorderOneDNNHandler reorder_handler(
x_vec_dims,
x.dtype(),
funcs::ToOneDNNDataType(x.dtype()),
dev_ctx.GetEngine());

auto reorder_src_memory_p = reorder_handler.AcquireSrcMemory(
x.mem_desc(), funcs::to_void_cast(x.data<T>()));
out->Resize(x_dims); // to match x numel, format is changed later
// reorder is done into a plain tag to allow usage with blocked formats
auto reorder_dst_memory_p = reorder_handler.AcquireDstMemory(
out, funcs::GetPlainOneDNNFormat(x_dims.size()), dev_ctx.GetPlace());
auto reorder_p = reorder_handler.AcquireReorder(reorder_dst_memory_p,
reorder_src_memory_p);
auto& astream = OneDNNContext::tls().get_stream();
reorder_p->execute(astream, *reorder_src_memory_p, *reorder_dst_memory_p);
astream.wait();

out->Resize(out_dims);
out->set_mem_desc(
reorder_dst_memory_p->get_desc().reshape(vectorize(out_dims)));
}

template <typename T, typename Context>
void SqueezeKernel(const Context& dev_ctx,
const DenseTensor& x,
const IntArray& axes,
DenseTensor* out) {
auto x_dims = x.dims();
std::vector<int32_t> tmp(axes.GetData().begin(), axes.GetData().end());
auto out_dims = funcs::GetOutputSqueezeShape(tmp, x_dims, true);
ExecuteSqueeze<T, Context>(dev_ctx, x, x_dims, out_dims, out);
}

template <typename T, typename Context>
void SqueezeWithXShapeKernel(const Context& dev_ctx,
const DenseTensor& x,
const IntArray& axes,
DenseTensor* out,
DenseTensor* xshape) {
auto x_dims = slice_ddim(xshape->dims(), 1, xshape->dims().size());
auto out_dims = out->dims();
ExecuteSqueeze<T, Context>(dev_ctx, x, x_dims, out_dims, out);
}
} // namespace phi

PD_REGISTER_KERNEL(
squeeze, OneDNN, ONEDNN, phi::SqueezeKernel, float, phi::dtype::bfloat16) {}

PD_REGISTER_KERNEL(squeeze_with_xshape,
OneDNN,
ONEDNN,
phi::SqueezeWithXShapeKernel,
float,
phi::dtype::bfloat16) {}