Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[XPU] add set_value and set_value_grad *test=kunlun #48845

Merged
merged 1 commit into from
Dec 8, 2022
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
7 changes: 7 additions & 0 deletions paddle/phi/backends/xpu/xpu2_op_list.cc
Original file line number Diff line number Diff line change
Expand Up @@ -414,6 +414,13 @@ XPUOpMap& get_kl2_ops() {
phi::DataType::FLOAT32})},
{"sampling_id",
XPUKernelSet({phi::DataType::FLOAT32, phi::DataType::FLOAT64})},
{"set_value",
XPUKernelSet({phi::DataType::INT32,
phi::DataType::INT64,
phi::DataType::FLOAT16,
phi::DataType::FLOAT32})},
{"set_value_grad",
XPUKernelSet({phi::DataType::FLOAT16, phi::DataType::FLOAT32})},
{"sgd", XPUKernelSet({phi::DataType::FLOAT32, phi::DataType::FLOAT16})},
{"sgd_dense_param_sparse_grad",
XPUKernelSet({phi::DataType::FLOAT32, phi::DataType::FLOAT16})},
Expand Down
128 changes: 128 additions & 0 deletions paddle/phi/kernels/xpu/set_value_grad_kernel.cc
Original file line number Diff line number Diff line change
@@ -0,0 +1,128 @@
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/phi/kernels/set_value_grad_kernel.h"

#include "paddle/phi/backends/xpu/enforce_xpu.h"
#include "paddle/phi/backends/xpu/xpu_context.h"
#include "paddle/phi/core/kernel_registry.h"

#include "paddle/phi/common/int_array.h"
#include "paddle/phi/common/scalar.h"
#include "paddle/phi/core/dense_tensor.h"
#include "paddle/phi/core/tensor_utils.h"
#include "paddle/phi/kernels/empty_kernel.h"
#include "paddle/phi/kernels/funcs/broadcast_function.h"
#include "paddle/phi/kernels/funcs/eigen/common.h"
#include "paddle/phi/kernels/funcs/eigen/eigen_function.h"
#include "paddle/phi/kernels/funcs/elementwise_functor.h"
#include "paddle/phi/kernels/funcs/slice_utils.h"

namespace phi {

template <typename T, typename Context>
void SetValueGradKernel(const Context& dev_ctx,
const DenseTensor& out_grad,
const IntArray& starts,
const IntArray& ends,
const IntArray& steps,
const std::vector<int64_t>& axes,
const std::vector<int64_t>& decrease_axes,
const std::vector<int64_t>& none_axes,
DenseTensor* x_grad,
DenseTensor* value_grad) {
using XPUType = typename XPUTypeTrait<T>::Type;
x_grad->Resize(out_grad.dims());
dev_ctx.template Alloc<T>(x_grad);
dev_ctx.template Alloc<T>(value_grad);

const XPUType* dy_data = reinterpret_cast<const XPUType*>(out_grad.data<T>());
XPUType* dx_data = reinterpret_cast<XPUType*>(x_grad->data<T>());
XPUType* dv_data = reinterpret_cast<XPUType*>(value_grad->data<T>());

std::vector<int64_t> starts_vec = starts.GetData();
std::vector<int64_t> ends_vec = ends.GetData();
std::vector<int64_t> steps_vec = steps.GetData();

auto dy_dims = out_grad.dims();
std::vector<int> dy_shape;
for (int i = 0; i < dy_dims.size(); ++i) {
dy_shape.push_back(dy_dims[i]);
}

auto dv_dims = value_grad->dims();
std::vector<int> dv_shape;
for (int i = 0; i < dv_dims.size(); ++i) {
dv_shape.push_back(dv_dims[i]);
}

auto dx_dims = x_grad->dims();
std::vector<int> dx_shape;
for (int i = 0; i < dx_dims.size(); ++i) {
dx_shape.push_back(dx_dims[i]);
}

std::vector<int> starts_vec_int32;
for (size_t i = 0; i < starts_vec.size(); ++i) {
starts_vec_int32.push_back(starts_vec[i]);
}

std::vector<int> ends_vec_int32;
for (size_t i = 0; i < ends_vec.size(); ++i) {
ends_vec_int32.push_back(ends_vec[i]);
}

std::vector<int> steps_vec_int32;
for (size_t i = 0; i < steps_vec.size(); ++i) {
steps_vec_int32.push_back(steps_vec[i]);
}

std::vector<int> axes_int32;
for (size_t i = 0; i < axes.size(); ++i) {
axes_int32.push_back(axes[i]);
}

std::vector<int> decrease_axes_int32;
for (size_t i = 0; i < decrease_axes.size(); ++i) {
decrease_axes_int32.push_back(decrease_axes[i]);
}

std::vector<int> none_axes_int32;
for (size_t i = 0; i < none_axes.size(); ++i) {
none_axes_int32.push_back(none_axes[i]);
}

int r = xpu::set_value_grad(dev_ctx.x_context(),
dy_data,
dx_data,
dv_data,
dy_shape,
dv_shape,
starts_vec_int32,
ends_vec_int32,
steps_vec_int32,
axes_int32,
decrease_axes_int32,
none_axes_int32);
PADDLE_ENFORCE_XDNN_SUCCESS(r, "set_value_grad");
}

} // namespace phi

PD_REGISTER_KERNEL(set_value_grad,
XPU,
ALL_LAYOUT,
phi::SetValueGradKernel,
float,
phi::dtype::float16) {}
165 changes: 165 additions & 0 deletions paddle/phi/kernels/xpu/set_value_kernel.cc
Original file line number Diff line number Diff line change
@@ -0,0 +1,165 @@
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/phi/kernels/set_value_kernel.h"

#include "paddle/phi/backends/xpu/enforce_xpu.h"
#include "paddle/phi/backends/xpu/xpu_context.h"
#include "paddle/phi/core/kernel_registry.h"

#include "paddle/phi/common/int_array.h"
#include "paddle/phi/common/scalar.h"
#include "paddle/phi/core/dense_tensor.h"
#include "paddle/phi/core/tensor_utils.h"
#include "paddle/phi/kernels/empty_kernel.h"
#include "paddle/phi/kernels/funcs/broadcast_function.h"
#include "paddle/phi/kernels/funcs/eigen/common.h"
#include "paddle/phi/kernels/funcs/eigen/eigen_function.h"
#include "paddle/phi/kernels/funcs/elementwise_functor.h"
#include "paddle/phi/kernels/funcs/slice_utils.h"

namespace phi {

template <typename T, typename Context>
void SetTensorValueKernel(const Context& dev_ctx,
const DenseTensor& x,
const DenseTensor& value,
const IntArray& starts,
const IntArray& ends,
const IntArray& steps,
const std::vector<int64_t>& axes,
const std::vector<int64_t>& decrease_axes,
const std::vector<int64_t>& none_axes,
DenseTensor* out) {
using XPUType = typename XPUTypeTrait<T>::Type;
out->Resize(x.dims());
dev_ctx.template Alloc<T>(out);

const XPUType* x_data = reinterpret_cast<const XPUType*>(x.data<T>());
const XPUType* v_data = reinterpret_cast<const XPUType*>(value.data<T>());
XPUType* y_data = reinterpret_cast<XPUType*>(out->data<T>());

std::vector<int64_t> starts_vec = starts.GetData();
std::vector<int64_t> ends_vec = ends.GetData();
std::vector<int64_t> steps_vec = steps.GetData();

std::vector<int> starts_vec_int32;
for (size_t i = 0; i < starts_vec.size(); ++i) {
starts_vec_int32.push_back(starts_vec[i]);
}

std::vector<int> ends_vec_int32;
for (size_t i = 0; i < ends_vec.size(); ++i) {
ends_vec_int32.push_back(ends_vec[i]);
}

std::vector<int> steps_vec_int32;
for (size_t i = 0; i < steps_vec.size(); ++i) {
steps_vec_int32.push_back(steps_vec[i]);
}

std::vector<int> axes_int32;
for (size_t i = 0; i < axes.size(); ++i) {
axes_int32.push_back(axes[i]);
}

std::vector<int> decrease_axes_int32;
for (size_t i = 0; i < decrease_axes.size(); ++i) {
decrease_axes_int32.push_back(decrease_axes[i]);
}

std::vector<int> none_axes_int32;
for (size_t i = 0; i < none_axes.size(); ++i) {
none_axes_int32.push_back(none_axes[i]);
}

auto x_dims = x.dims();
std::vector<int> x_shape;
for (int i = 0; i < x_dims.size(); ++i) {
x_shape.push_back(x_dims[i]);
}

auto v_dims = value.dims();
std::vector<int> v_shape;
for (int i = 0; i < v_dims.size(); ++i) {
v_shape.push_back(v_dims[i]);
}

int r = xpu::set_value(dev_ctx.x_context(),
x_data,
v_data,
y_data,
x_shape,
v_shape,
starts_vec_int32,
ends_vec_int32,
steps_vec_int32,
axes_int32,
decrease_axes_int32,
none_axes_int32);
PADDLE_ENFORCE_XDNN_SUCCESS(r, "set_value");
}

template <typename T, typename Context>
void SetValueKernel(const Context& dev_ctx,
const DenseTensor& x,
const IntArray& starts,
const IntArray& ends,
const IntArray& steps,
const std::vector<int64_t>& axes,
const std::vector<int64_t>& decrease_axes,
const std::vector<int64_t>& none_axes,
const std::vector<int64_t>& shape,
const std::vector<Scalar>& values,
DenseTensor* out) {
std::vector<T> assgin_values;
assgin_values.reserve(values.size());
for (const auto& val : values) {
assgin_values.push_back(val.to<T>());
}
DenseTensor value_tensor = Empty<T>(dev_ctx, shape);
paddle::framework::TensorFromVector(assgin_values, dev_ctx, &value_tensor);
value_tensor.Resize(phi::make_ddim(shape));

SetTensorValueKernel<T, Context>(dev_ctx,
x,
value_tensor,
starts,
ends,
steps,
axes,
decrease_axes,
none_axes,
out);
}

} // namespace phi

PD_REGISTER_KERNEL(set_value,
XPU,
ALL_LAYOUT,
phi::SetValueKernel,
float,
phi::dtype::float16,
int,
int64_t) {}

PD_REGISTER_KERNEL(set_value_with_tensor,
XPU,
ALL_LAYOUT,
phi::SetTensorValueKernel,
float,
phi::dtype::float16,
int,
int64_t) {}
Loading