Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

add test for 0d tensor for real, imag, angle, conj, as_real, sequence_pad #49921

Merged
merged 1 commit into from
Jan 19, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions paddle/fluid/operators/sequence_ops/sequence_pad_op.cc
Original file line number Diff line number Diff line change
Expand Up @@ -56,6 +56,7 @@ class SequencePadOp : public framework::OperatorWithKernel {
auto pad_value_dims = ctx->GetInputDim("PadValue");
PADDLE_ENFORCE_EQ(
pad_value_dims == phi::make_ddim({1}) ||
pad_value_dims == phi::make_ddim({}) ||
pad_value_dims == time_step_dims,
true,
platform::errors::InvalidArgument(
Expand Down
187 changes: 187 additions & 0 deletions python/paddle/fluid/tests/unittests/test_zero_dim_tensor.py
Original file line number Diff line number Diff line change
Expand Up @@ -2282,6 +2282,21 @@ def test_t(self):
self.assertEqual(res[1].shape, ())
self.assertEqual(res[2].shape, ())

@prog_scope()
def test_sequence_pad(self):
x = paddle.static.data("x", [-1, 2], dtype=paddle.int64, lod_level=1)
value = paddle.to_tensor(1000, dtype=paddle.int64).squeeze()
out = paddle.static.nn.sequence_pad(x, value)

x_tensor = paddle.fluid.create_lod_tensor(
np.arange(20).astype(np.int64).reshape(-1, 2),
[[3, 3, 4]],
place=self.exe.place,
)
prog = paddle.static.default_main_program()
res = self.exe.run(prog, feed={"x": x_tensor}, fetch_list=[out])
self.assertEqual(res[0].shape, (3, 4, 2))


# Use to test API whose zero-dim input tensors don't have grad and not need to test backward in OpTest.
class TestNoBackwardAPI(unittest.TestCase):
Expand Down Expand Up @@ -2633,5 +2648,177 @@ def test_one_hot_label(self):
self.assertEqual(res[0][2], 1)


unary_apis_with_complex_input = [
paddle.real,
paddle.imag,
paddle.angle,
paddle.conj,
]


class TestUnaryElementwiseAPIWithComplexInput(unittest.TestCase):
def test_dygraph_unary(self):
paddle.disable_static()
for api in unary_apis_with_complex_input:
x = paddle.to_tensor(2.0 + 3.0j).squeeze()
x.stop_gradient = False
x.retain_grads()
out = api(x)
out.retain_grads()
out.backward()

self.assertEqual(x.shape, [])
self.assertEqual(out.shape, [])
if x.grad is not None:
self.assertEqual(x.grad.shape, [])
self.assertEqual(out.grad.shape, [])

paddle.enable_static()

def test_static_unary(self):
paddle.enable_static()

for api in unary_apis_with_complex_input:
main_prog = paddle.static.Program()
block = main_prog.global_block()
exe = paddle.static.Executor()
with paddle.static.program_guard(
main_prog, paddle.static.Program()
):
# before full support for complex, we cannot create complex tensor with the same code as in dynamic graph
x = paddle.complex(
paddle.to_tensor(2.0), paddle.to_tensor(2.0)
).squeeze()
x.stop_gradient = False
out = api(x)
# TODO(zhouwei):
# ScaleLossGradOp / append_backward set grad shape to [1]
# after output 0D, may change it to []
# use out.sum() to avoid this two problem now
loss = out.sum()
paddle.static.append_backward(loss)

fetch_list = [x, out]
if block.has_var(x.grad_name):
fetch_list.extend([x.grad_name, out.grad_name])

# 1) Test Program
res = exe.run(main_prog, fetch_list=fetch_list)
for item in res:
self.assertEqual(item.shape, ())

# 2) Test CompiledProgram Program
if paddle.device.is_compiled_with_cuda():
places = [paddle.CUDAPlace(0)]
expect_shape = ()
else:
places = [paddle.CPUPlace()] * 4
expect_shape = (4,)
compile_prog = paddle.static.CompiledProgram(
main_prog
).with_data_parallel(loss.name, places=places)

# return_merged=False #
res = exe.run(
compile_prog, fetch_list=fetch_list, return_merged=False
)
for item1 in res:
for item2 in item1:
self.assertEqual(item2.shape, ())

# return_merged=True #
res = exe.run(
compile_prog, fetch_list=fetch_list, return_merged=True
)
for item in res:
self.assertEqual(item.shape, expect_shape)

paddle.disable_static()


class TestAsReal(unittest.TestCase):
def test_dygraph(self):
paddle.disable_static()
for api in unary_apis_with_complex_input:
x = paddle.to_tensor(2.0 + 3.0j).squeeze()
x.stop_gradient = False
x.retain_grads()
out = paddle.as_real(x)
out.retain_grads()
out.backward()

self.assertEqual(x.shape, [])
self.assertEqual(out.shape, [2])
if x.grad is not None:
self.assertEqual(x.grad.shape, [])
self.assertEqual(out.grad.shape, [2])

paddle.enable_static()

def test_static(self):
paddle.enable_static()

for api in unary_apis_with_complex_input:
main_prog = paddle.static.Program()
block = main_prog.global_block()
exe = paddle.static.Executor()
with paddle.static.program_guard(
main_prog, paddle.static.Program()
):
# before full support for complex, we cannot create complex tensor with the same code as in dynamic graph
x = paddle.complex(
paddle.to_tensor(2.0), paddle.to_tensor(2.0)
).squeeze()
x.stop_gradient = False
out = paddle.as_real(x)
self.assertEqual(x.shape, ())
self.assertEqual(out.shape, (2,))
# TODO(zhouwei):
# ScaleLossGradOp / append_backward set grad shape to [1]
# after output 0D, may change it to []
# use out.sum() to avoid this two problem now
loss = out.abs().sum()
paddle.static.append_backward(loss)

fetch_list = [x, out]
if block.has_var(x.grad_name):
fetch_list.extend([x.grad_name, out.grad_name])

# 1) Test Program
res = exe.run(main_prog, fetch_list=fetch_list)
self.assertEqual(res[0].shape, ())
self.assertEqual(res[1].shape, (2,))
self.assertEqual(res[2].shape, ())
self.assertEqual(res[3].shape, (2,))

# 2) Test CompiledProgram Program
if paddle.device.is_compiled_with_cuda():
places = [paddle.CUDAPlace(0)]
expect_shapes = (), (2,), (), (2,)
else:
places = [paddle.CPUPlace()] * 4
expect_shapes = (4,), (8,), (4,), (8,)
compile_prog = paddle.static.CompiledProgram(
main_prog
).with_data_parallel(loss.name, places=places)

# return_merged=False #
res = exe.run(
compile_prog, fetch_list=fetch_list, return_merged=False
)
for out_i, expect in zip(res, [(), (2,), (), (2,)]):
for replica in out_i:
self.assertEqual(replica.shape, expect)

# return_merged=True #
res = exe.run(
compile_prog, fetch_list=fetch_list, return_merged=True
)
for actual, expect in zip(res, expect_shapes):
self.assertEqual(actual.shape, expect)

paddle.disable_static()


if __name__ == "__main__":
unittest.main()