Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[CINN] Add test and full dtype support for argx op #54939

Merged
merged 8 commits into from
Jul 4, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
4 changes: 4 additions & 0 deletions paddle/cinn/runtime/cuda/cinn_cuda_runtime_source.cuh
Original file line number Diff line number Diff line change
Expand Up @@ -686,6 +686,8 @@ __device__ inline int cinn_cuda_find_float_from(const float *buf, int size, floa

CINN_NVGPU_LT_NUM(fp32, float)
CINN_NVGPU_LT_NUM(fp64, double)
CINN_NVGPU_LT_NUM(uint8, uint8_t)
CINN_NVGPU_LT_NUM(int16, int16_t)
CINN_NVGPU_LT_NUM(int32, int)
CINN_NVGPU_LT_NUM(int64, long long int)
#ifdef CINN_CUDA_FP16
Expand All @@ -706,6 +708,8 @@ CINN_NVGPU_LT_NUM(fp16, float16)

CINN_NVGPU_GT_NUM(fp32, float)
CINN_NVGPU_GT_NUM(fp64, double)
CINN_NVGPU_GT_NUM(uint8, uint8_t)
CINN_NVGPU_GT_NUM(int16, int16_t)
CINN_NVGPU_GT_NUM(int32, int)
CINN_NVGPU_GT_NUM(int64, long long int)
#ifdef CINN_CUDA_FP16
Expand Down
5 changes: 5 additions & 0 deletions paddle/cinn/runtime/cuda/cuda_intrinsics.cc
Original file line number Diff line number Diff line change
Expand Up @@ -345,6 +345,9 @@ CINN_REGISTER_HELPER(cuda_intrinsics) {

_REGISTER_CINN_NVGPU_LT_NUM(fp32, float);
_REGISTER_CINN_NVGPU_LT_NUM(fp64, double);
_REGISTER_CINN_NVGPU_LT_NUM(uint8, uint8_t);
_REGISTER_CINN_NVGPU_LT_NUM(int16, int16_t);

_REGISTER_CINN_NVGPU_LT_NUM(int32, int);
_REGISTER_CINN_NVGPU_LT_NUM(int64, int64_t);

Expand All @@ -362,6 +365,8 @@ CINN_REGISTER_HELPER(cuda_intrinsics) {

_REGISTER_CINN_NVGPU_GT_NUM(fp32, float);
_REGISTER_CINN_NVGPU_GT_NUM(fp64, double);
_REGISTER_CINN_NVGPU_GT_NUM(uint8, uint8_t);
_REGISTER_CINN_NVGPU_GT_NUM(int16, int16_t);
_REGISTER_CINN_NVGPU_GT_NUM(int32, int);
_REGISTER_CINN_NVGPU_GT_NUM(int64, int64_t);

Expand Down
180 changes: 180 additions & 0 deletions test/cinn/ops/test_argmax_op.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,180 @@
#!/usr/bin/env python3

# Copyright (c) 2023 CINN Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.


import numpy as np
from cinn.common import *
from cinn.frontend import *
from op_test import OpTest, OpTestTool
from op_test_helper import TestCaseHelper

import paddle


@OpTestTool.skip_if(
not is_compiled_with_cuda(), "x86 test will be skipped due to timeout."
)
class TestArgMaxOp(OpTest):
def setUp(self):
self.prepare_inputs()

def prepare_inputs(self):
self.x_np = self.random(
self.case["shape"], self.case["dtype"], low=0, high=10
)
self.axis = self.case["axis"]
self.keepdim = self.case["keepdim"]

def build_paddle_program(self, target):
x = paddle.to_tensor(self.x_np, stop_gradient=True)
out = paddle.argmax(x, self.axis, self.keepdim)
self.paddle_outputs = [out]

def build_cinn_program(self, target):
builder = NetBuilder("argmax")
x = builder.create_input(
self.nptype2cinntype(self.case["dtype"]), self.case["shape"], "x"
)
out = builder.argmax(x, self.axis, self.keepdim)
prog = builder.build()
forward_res = self.get_cinn_output(
prog, target, [x], [self.x_np], [out]
)
self.cinn_outputs = np.array(forward_res).astype("int64")

def test_check_results(self):
self.check_outputs_and_grads()


class TestArgMaxOpShapeTest(TestCaseHelper):
def init_attrs(self):
self.class_name = "ArgMaxOpShapeTest"
self.cls = TestArgMaxOp
self.inputs = [
{
"shape": [512],
},
{
"shape": [1024],
},
{
"shape": [1200],
},
{
"shape": [64, 16],
},
{
"shape": [4, 32, 8],
},
{
"shape": [16, 8, 4, 2],
},
{
"shape": [2, 8, 4, 2, 5],
},
{
"shape": [4, 8, 1, 2, 16],
},
{
"shape": [1],
},
{
"shape": [1, 1, 1, 1],
},
{
"shape": [1, 1, 1, 1, 1],
},
]
self.dtypes = [{"dtype": "float32"}]
self.attrs = [{"axis": 0, "keepdim": False}]


class TestArgMaxOpDtypeTest(TestCaseHelper):
def init_attrs(self):
self.class_name = "ArgMaxOpDtypeTest"
self.cls = TestArgMaxOp
self.inputs = [
{
"shape": [1024],
},
]
self.dtypes = [
{
"dtype": "float16",
},
{
"dtype": "float32",
},
{
"dtype": "float64",
},
{
"dtype": "uint8",
},
{
"dtype": "int16",
},
{
"dtype": "int32",
},
{
"dtype": "int64",
},
]
self.attrs = [{"axis": 0, "keepdim": False}]


class TestArgMaxOpAxisTest(TestCaseHelper):
def init_attrs(self):
self.class_name = "ArgMaxOpAxisTest"
self.cls = TestArgMaxOp
self.inputs = [
{
"shape": [16, 8, 4, 2],
},
]
self.dtypes = [{"dtype": "float32"}]
self.attrs = [
{"axis": 0, "keepdim": False},
{"axis": 1, "keepdim": False},
{"axis": 2, "keepdim": False},
{"axis": 3, "keepdim": False},
]


class TestArgMaxOpKeepdimTest(TestCaseHelper):
def init_attrs(self):
self.class_name = "ArgMaxOpKeepdimTest"
self.cls = TestArgMaxOp
self.inputs = [
{
"shape": [16, 8, 4, 2],
},
]
self.dtypes = [{"dtype": "float32"}]
self.attrs = [
{"axis": 0, "keepdim": True},
{"axis": 1, "keepdim": True},
{"axis": 2, "keepdim": True},
{"axis": 3, "keepdim": True},
]


if __name__ == "__main__":
TestArgMaxOpShapeTest().run()
TestArgMaxOpDtypeTest().run()
TestArgMaxOpAxisTest().run()
TestArgMaxOpKeepdimTest().run()
180 changes: 180 additions & 0 deletions test/cinn/ops/test_argmin_op.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,180 @@
#!/usr/bin/env python3

# Copyright (c) 2023 CINN Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.


import numpy as np
from cinn.common import *
from cinn.frontend import *
from op_test import OpTest, OpTestTool
from op_test_helper import TestCaseHelper

import paddle


@OpTestTool.skip_if(
not is_compiled_with_cuda(), "x86 test will be skipped due to timeout."
)
class TestArgMinOp(OpTest):
def setUp(self):
self.prepare_inputs()

def prepare_inputs(self):
self.x_np = self.random(
self.case["shape"], self.case["dtype"], low=0, high=10
)
self.axis = self.case["axis"]
self.keepdim = self.case["keepdim"]

def build_paddle_program(self, target):
x = paddle.to_tensor(self.x_np, stop_gradient=True)
out = paddle.argmin(x, self.axis, self.keepdim)
self.paddle_outputs = [out]

def build_cinn_program(self, target):
builder = NetBuilder("argmin")
x = builder.create_input(
self.nptype2cinntype(self.case["dtype"]), self.case["shape"], "x"
)
out = builder.argmin(x, self.axis, self.keepdim)
prog = builder.build()
forward_res = self.get_cinn_output(
prog, target, [x], [self.x_np], [out]
)
self.cinn_outputs = np.array(forward_res).astype("int64")

def test_check_results(self):
self.check_outputs_and_grads()


class TestArgMinOpShapeTest(TestCaseHelper):
def init_attrs(self):
self.class_name = "ArgMinOpShapeTest"
self.cls = TestArgMinOp
self.inputs = [
{
"shape": [512],
},
{
"shape": [1024],
},
{
"shape": [1200],
},
{
"shape": [64, 16],
},
{
"shape": [4, 32, 8],
},
{
"shape": [16, 8, 4, 2],
},
{
"shape": [2, 8, 4, 2, 5],
},
{
"shape": [4, 8, 1, 2, 16],
},
{
"shape": [1],
},
{
"shape": [1, 1, 1, 1],
},
{
"shape": [1, 1, 1, 1, 1],
},
]
self.dtypes = [{"dtype": "float32"}]
self.attrs = [{"axis": 0, "keepdim": False}]


class TestArgMinOpDtypeTest(TestCaseHelper):
def init_attrs(self):
self.class_name = "ArgMinOpDtypeTest"
self.cls = TestArgMinOp
self.inputs = [
{
"shape": [1024],
},
]
self.dtypes = [
{
"dtype": "float16",
},
{
"dtype": "float32",
},
{
"dtype": "float64",
},
{
"dtype": "uint8",
},
{
"dtype": "int16",
},
{
"dtype": "int32",
},
{
"dtype": "int64",
},
]
self.attrs = [{"axis": 0, "keepdim": False}]


class TestArgMinOpAxisTest(TestCaseHelper):
def init_attrs(self):
self.class_name = "ArgMinOpAxisTest"
self.cls = TestArgMinOp
self.inputs = [
{
"shape": [16, 8, 4, 2],
},
]
self.dtypes = [{"dtype": "float32"}]
self.attrs = [
{"axis": 0, "keepdim": False},
{"axis": 1, "keepdim": False},
{"axis": 2, "keepdim": False},
{"axis": 3, "keepdim": False},
]


class TestArgMinOpKeepdimTest(TestCaseHelper):
def init_attrs(self):
self.class_name = "ArgMinOpKeepdimTest"
self.cls = TestArgMinOp
self.inputs = [
{
"shape": [16, 8, 4, 2],
},
]
self.dtypes = [{"dtype": "float32"}]
self.attrs = [
{"axis": 0, "keepdim": True},
{"axis": 1, "keepdim": True},
{"axis": 2, "keepdim": True},
{"axis": 3, "keepdim": True},
]


if __name__ == "__main__":
TestArgMinOpShapeTest().run()
TestArgMinOpDtypeTest().run()
TestArgMinOpAxisTest().run()
TestArgMinOpKeepdimTest().run()
Loading