Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[Fluid] move lars_momentum_xpu to phi #56751

Merged
merged 2 commits into from
Sep 5, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
125 changes: 0 additions & 125 deletions paddle/fluid/operators/optimizers/lars_momentum_op_xpu.cc

This file was deleted.

113 changes: 113 additions & 0 deletions paddle/phi/kernels/xpu/lars_momentum_kernel.cc
Original file line number Diff line number Diff line change
@@ -0,0 +1,113 @@
// Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/phi/kernels/lars_momentum_kernel.h"
#include "paddle/phi/backends/xpu/enforce_xpu.h"
#include "paddle/phi/backends/xpu/xpu_context.h"
#include "paddle/phi/core/kernel_registry.h"

namespace phi {

template <typename T, typename Context>
void LarsMomentumKernel(
const Context& dev_ctx,
const std::vector<const DenseTensor*>& param,
const std::vector<const DenseTensor*>& velocity,
const std::vector<const DenseTensor*>& learning_rate,
const std::vector<const DenseTensor*>& grad,
const paddle::optional<std::vector<const DenseTensor*>>& master_param,
const std::vector<float>& weight_decay_arr,
float mu,
float lars_coeff,
float epsilon,
bool multi_precision,
float rescale_grad,
std::vector<DenseTensor*> param_out,
std::vector<DenseTensor*> velocity_out,
std::vector<DenseTensor*> master_param_out) {
using XPUType = typename XPUTypeTrait<T>::Type;
std::vector<XPUType*> param_list;
std::vector<XPUType*> grad_list;
std::vector<XPUType*> param_out_list;
std::vector<float*> velocity_list;
std::vector<float*> velocity_out_list;
std::vector<float*> lrs;
std::vector<int> param_sizes;

std::vector<float*> master_param_list;
std::vector<float*> master_param_out_list;
int op_num = param.size();
for (int i = 0; i < op_num; ++i) {
param_list.push_back(
reinterpret_cast<XPUType*>(const_cast<T*>((param[i]->data<T>()))));
grad_list.push_back(
reinterpret_cast<XPUType*>(const_cast<T*>(grad[i]->data<T>())));
param_out_list.push_back(
reinterpret_cast<XPUType*>(dev_ctx.template Alloc<T>(param_out[i])));
velocity_list.push_back(const_cast<float*>(velocity[i]->data<float>()));
velocity_out_list.push_back(dev_ctx.template Alloc<float>(velocity_out[i]));
lrs.push_back(const_cast<float*>(learning_rate[i]->data<float>()));
param_sizes.push_back(param[i]->numel());

PADDLE_ENFORCE_EQ(
param_list[i],
param_out_list[i],
phi::errors::InvalidArgument(
"Input(Param) and Output(ParamOut) must be the same Tensors."));
PADDLE_ENFORCE_EQ(velocity_list[i],
velocity_out_list[i],
phi::errors::InvalidArgument(
"Input(Velocity) and Output(VelocityOut) must be "
"the same Tensors."));
if (multi_precision) {
master_param_list.push_back(
const_cast<float*>(master_param.get()[i]->data<float>()));
master_param_out_list.push_back(
dev_ctx.template Alloc<float>(master_param_out[i]));
PADDLE_ENFORCE_EQ(master_param_list[i],
master_param_out_list[i],
phi::errors::InvalidArgument(
"Input(MasterParam) and Output(MasterParamOut) "
"must be the same Tensors."));
} else {
master_param_list.push_back(nullptr);
master_param_out_list.push_back(nullptr);
}
}

int r = lars_momentum(dev_ctx.x_context(),
param_list,
grad_list,
velocity_list,
lrs,
master_param_list,
param_out_list,
velocity_out_list,
master_param_out_list,
weight_decay_arr,
param_sizes,
mu,
lars_coeff,
epsilon,
rescale_grad);
PADDLE_ENFORCE_XDNN_SUCCESS(r, "lars_momentum");
}
} // namespace phi

PD_REGISTER_KERNEL(lars_momentum,
XPU,
ALL_LAYOUT,
phi::LarsMomentumKernel,
float,
phi::dtype::float16) {}