Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[Semi Auto] Revise spmd rule static mode API #57269

Merged
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
264 changes: 152 additions & 112 deletions paddle/fluid/pybind/auto_parallel_py.cc
Original file line number Diff line number Diff line change
Expand Up @@ -12,6 +12,7 @@
// See the License for the specific language governing permissions and
// limitations under the License.

#include <Python.h>
#include <pybind11/operators.h>
#include <pybind11/stl.h>
#include <utility>
Expand All @@ -20,6 +21,8 @@
#include "paddle/fluid/framework/op_desc.h"
#include "paddle/fluid/framework/var_desc.h"
#include "paddle/fluid/pybind/auto_parallel_py.h"
#include "paddle/fluid/pybind/eager_utils.h"
#include "paddle/fluid/pybind/op_function_common.h"
#include "paddle/fluid/pybind/pybind_variant_caster.h"
#include "paddle/phi/core/device_context.h"
#include "paddle/phi/core/distributed/auto_parallel/device_mesh.h"
Expand Down Expand Up @@ -47,6 +50,14 @@ namespace py = pybind11;
namespace paddle {
namespace pybind {

static bool PyCheckInteger(PyObject *obj) {
#if PY_VERSION_HEX < 0x03000000
return (PyLong_Check(obj) || PyInt_Check(obj)) && !PyBool_Check(obj);
#else
return PyLong_Check(obj) && !PyBool_Check(obj);
#endif
}

using paddle::distributed::auto_parallel::DistTensorSpec;
using paddle::distributed::auto_parallel::kDefault;
using paddle::distributed::auto_parallel::OperatorDistAttr;
Expand All @@ -66,6 +77,8 @@ using phi::distributed::auto_parallel::LinkCapability;
using phi::distributed::auto_parallel::Machine;

PyTypeObject *g_tensor_dist_attr_pytype = nullptr;
PyTypeObject *g_dist_tensor_spec_pytype = nullptr;
constexpr const char *infer_spmd_string = "infer_spmd";

static inline const ProcessMesh *get_tensor_process_mesh(
const TensorDistAttr &self) {
Expand Down Expand Up @@ -122,6 +135,11 @@ static inline void reset_operator_dist_attr(OperatorDistAttr *dist_attr) {
dist_attr->clear_annotated();
}

static std::pair<std::vector<TensorDistAttr>, std::vector<TensorDistAttr>>
infer_forward(const phi::distributed::SpmdRule &self, const py::args &args);
static std::pair<std::vector<TensorDistAttr>, std::vector<TensorDistAttr>>
infer_backward(const phi::distributed::SpmdRule &self, const py::args &args);

void BindAutoParallel(py::module *m) {
auto ReshardFunction =
py::class_<phi::distributed::ReshardFunction>(*m, "ReshardFunction")
Expand Down Expand Up @@ -368,118 +386,14 @@ void BindAutoParallel(py::module *m) {
// .def("infer_backward", &SPMDRuleBase::InferBackward) [revert in future]

py::class_<phi::distributed::SpmdRule>(*m, "SpmdRule")
.def("infer_forward",
[](const phi::distributed::SpmdRule &self,
const std::vector<DistTensorSpec> &input_specs,
const std::vector<phi::Attribute> &attrs) {
phi::distributed::InferSpmdContext ctx;
for (auto &spec : input_specs) {
ctx.EmplaceBackInput(phi::distributed::DistMetaTensor(
phi::make_ddim(spec.shape()), spec.dist_attr()));
}
for (auto &attr : attrs) {
ctx.EmplaceBackAttr(attr);
}
return self.InferForward(ctx);
})
.def("infer_forward", // for op that have vector argument
[](const phi::distributed::SpmdRule &self,
const std::vector<std::pair<int, int>> &input_ranges,
const std::vector<DistTensorSpec> &input_specs,
const std::vector<phi::Attribute> &attrs) {
/*
to distingish between single tensor argument and vector argument of
one tensor: start - end == 0: single tensor start - end == 1:
vector containing one tensor input_ranges: [(0, 0), (1, 3), (3, 4)]
+ input_specs: [t0, t1, t2, t3] --> t0, [t1, t2], [t3]
*/
phi::distributed::InferSpmdContext ctx;
paddle::small_vector<phi::distributed::DistMetaTensor,
phi::kInputSmallVectorSize>
ins;
for (auto &range : input_ranges) {
if (range.second - range.first == 0) {
auto &in = input_specs.at(range.first);
ctx.EmplaceBackInput(phi::distributed::DistMetaTensor(
phi::make_ddim(in.shape()), in.dist_attr()));
} else {
int start = range.first;
int end = range.second;
ins.reserve(end - start);
for (int i = start; i < end; ++i) {
auto &in = input_specs.at(i);
ins.emplace_back(phi::distributed::DistMetaTensor(
phi::make_ddim(in.shape()), in.dist_attr()));
}
ctx.EmplaceBackInputs(ins);
ins.clear();
}
}
for (auto &attr : attrs) {
ctx.EmplaceBackAttr(attr);
}
return self.InferForward(ctx);
})
.def("infer_backward",
[](const phi::distributed::SpmdRule &self,
const std::vector<DistTensorSpec> &input_specs,
const std::vector<DistTensorSpec> &output_specs,
const std::vector<phi::Attribute> &attrs) {
phi::distributed::InferSpmdContext ctx;
for (auto &spec : input_specs) {
ctx.EmplaceBackInput(phi::distributed::DistMetaTensor(
phi::make_ddim(spec.shape()), spec.dist_attr()));
}
for (auto &spec : output_specs) {
ctx.EmplaceBackInput(phi::distributed::DistMetaTensor(
phi::make_ddim(spec.shape()), spec.dist_attr()));
}
for (auto &attr : attrs) {
ctx.EmplaceBackAttr(attr);
}
return self.InferBackward(ctx);
})
.def("infer_backward", // for op that have vector argument
[](const phi::distributed::SpmdRule &self,
const std::vector<std::pair<int, int>> &input_ranges,
const std::vector<DistTensorSpec> &input_specs,
const std::vector<phi::Attribute> &attrs) {
/*
to distingish between single tensor argument and vector argument of
one tensor: start - end == 0: single tensor start - end == 1:
vector containing one tensor input_ranges: [(0, 0), (1, 3), (3, 4)]
+ input_specs: [t0, t1, t2, t3] --> t0, [t1, t2], [t3]
*/
phi::distributed::InferSpmdContext ctx;
paddle::small_vector<phi::distributed::DistMetaTensor,
phi::kInputSmallVectorSize>
ins;
for (auto &range : input_ranges) {
if (range.second - range.first == 0) {
auto &in = input_specs.at(range.first);
ctx.EmplaceBackInput(phi::distributed::DistMetaTensor(
phi::make_ddim(in.shape()), in.dist_attr()));
} else {
int start = range.first;
int end = range.second;
ins.reserve(end - start);
for (int i = start; i < end; ++i) {
auto &in = input_specs.at(i);
ins.emplace_back(phi::distributed::DistMetaTensor(
phi::make_ddim(in.shape()), in.dist_attr()));
}
ctx.EmplaceBackInputs(ins);
ins.clear();
}
}
for (auto &attr : attrs) {
ctx.EmplaceBackAttr(attr);
}
return self.InferBackward(ctx);
});

py::class_<DistTensorSpec>(*m, "DistTensorSpec")
.def(py::init<>())
.def("infer_forward", &infer_forward)
.def("infer_backward", &infer_backward);

py::class_<DistTensorSpec> py_dist_tensor_spec(
*m, "DistTensorSpec"); // TODO(ljz) remove and unify to DistTensor
g_dist_tensor_spec_pytype =
reinterpret_cast<PyTypeObject *>(py_dist_tensor_spec.ptr());
py_dist_tensor_spec.def(py::init<>())
.def(py::init<const DistTensorSpec &>())
.def(py::init<const std::vector<int64_t> &, const TensorDistAttr &>())
.def("dims_mapping", &DistTensorSpec::dims_mapping)
Expand Down Expand Up @@ -634,5 +548,131 @@ void BindAutoParallel(py::module *m) {
});
}

static void parse_tensors(PyObject *obj,
phi::distributed::InferSpmdContext *ctx,
const size_t arg_pos) {
Py_ssize_t len = PyList_Size(obj);
VLOG(6) << "args indx: [" << arg_pos << "] input vector of ["
<< static_cast<size_t>(len) << "] tensors.";
paddle::small_vector<phi::distributed::DistMetaTensor,
phi::kInputSmallVectorSize>
ins;
ins.reserve(static_cast<size_t>(len));
for (Py_ssize_t i = 0; i < len; i++) {
DistTensorSpec in = py::cast<DistTensorSpec>(PyList_GetItem(obj, i));
VLOG(6) << "Vector emplace_back DistTensorSpec: " << in.to_string();
ins.emplace_back(phi::distributed::DistMetaTensor(
phi::make_ddim(in.shape()), in.dist_attr()));
}
ctx->EmplaceBackInputs(ins);
}

static void parse_tensor(PyObject *obj,
phi::distributed::InferSpmdContext *ctx,
const size_t arg_pos) {
VLOG(6) << "args indx: [" << arg_pos << "] input one tensor.";
DistTensorSpec in = py::cast<DistTensorSpec>(obj);
VLOG(6) << "DistTensorSpec: " << in.to_string();
ctx->EmplaceBackInput(phi::distributed::DistMetaTensor(
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Maybe we can consider unify DistMetaTensor and DistTensorSpec in the future.

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

yes, that is on the list

phi::make_ddim(in.shape()), in.dist_attr()));
}

// TODO(ljz) support other types
static void parse_attrs(PyObject *obj,
PyObject *first_item,
phi::distributed::InferSpmdContext *ctx,
const size_t arg_pos) {
if (PyBool_Check(first_item)) {
auto attrs = CastPyArg2Booleans(obj, infer_spmd_string, arg_pos);
ctx->EmplaceBackAttr(attrs);
} else if (PyCheckInteger(first_item)) {
auto attrs = CastPyArg2Ints(obj, infer_spmd_string, arg_pos);
ctx->EmplaceBackAttr(attrs);
} else if (PyLong_Check(first_item)) {
auto attrs = CastPyArg2Longs(obj, infer_spmd_string, arg_pos);
ctx->EmplaceBackAttr(attrs);
} else if (PyFloat_Check(first_item)) {
auto attrs = CastPyArg2Floats(obj, infer_spmd_string, arg_pos);
ctx->EmplaceBackAttr(attrs);
} else {
PADDLE_THROW(platform::errors::InvalidArgument(
"%s(): argument (position %d) must be "
"list of int, float, bool or Tensor, but got %s",
infer_spmd_string,
arg_pos,
((PyTypeObject *)first_item->ob_type)->tp_name)); // NOLINT
}
}

// TODO(ljz) support other types
static void parse_attr(PyObject *obj,
phi::distributed::InferSpmdContext *ctx,
const size_t arg_pos) {
if (PyBool_Check(obj)) {
auto attr = CastPyArg2Boolean(obj, infer_spmd_string, arg_pos);
ctx->EmplaceBackAttr(attr);
} else if (PyCheckInteger(obj)) {
auto attr = CastPyArg2Int(obj, infer_spmd_string, arg_pos);
ctx->EmplaceBackAttr(attr);
} else if (PyLong_Check(obj)) {
auto attr = CastPyArg2Long(obj, infer_spmd_string, arg_pos);
ctx->EmplaceBackAttr(attr);
} else if (PyFloat_Check(obj)) {
auto attr = CastPyArg2Float(obj, infer_spmd_string, arg_pos);
ctx->EmplaceBackAttr(attr);
} else { // TODO(ljz) support other types
PADDLE_THROW(platform::errors::InvalidArgument(
"%s(): argument (position %d) must be "
"int, float, bool or Tensor, but got %s",
infer_spmd_string,
arg_pos,
((PyTypeObject *)obj->ob_type)->tp_name)); // NOLINT
}
}

static void parse_single_pyobject(PyObject *obj,
phi::distributed::InferSpmdContext *ctx,
const size_t arg_pos) {
if (PyList_Check(obj)) { // list inputs, spmd not allow tuple inputs
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

I suggest we can support tuple and list both.

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

there is no tuple argument in Phi API yaml right now, we would support it once there is tuple input defined by Phi.

PyObject *first_item = PyList_GetItem(obj, 0);
if (PyObject_TypeCheck(first_item, g_dist_tensor_spec_pytype)) {
parse_tensors(obj, ctx, arg_pos);
} else {
parse_attrs(obj, first_item, ctx, arg_pos);
}
} else {
if (PyObject_TypeCheck(obj, g_dist_tensor_spec_pytype)) {
parse_tensor(obj, ctx, arg_pos);
} else {
parse_attr(obj, ctx, arg_pos);
}
}
}

static void prepare_ctx(phi::distributed::InferSpmdContext *ctx,
const py::args &args) {
VLOG(6) << "prepare_ctx ";
size_t inputs_size = args.size();
for (size_t i = 0; i < inputs_size; ++i) {
PyObject *obj = args[i].ptr();
parse_single_pyobject(obj, ctx, i);
}
}
static std::pair<std::vector<TensorDistAttr>, std::vector<TensorDistAttr>>
infer_forward(const phi::distributed::SpmdRule &self, const py::args &args) {
VLOG(6) << "infer_forward ";
phi::distributed::InferSpmdContext ctx;
prepare_ctx(&ctx, args);
return self.InferForward(ctx);
}

static std::pair<std::vector<TensorDistAttr>, std::vector<TensorDistAttr>>
infer_backward(const phi::distributed::SpmdRule &self, const py::args &args) {
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

py::args& can be const?

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

it work

VLOG(6) << "infer_backward ";
phi::distributed::InferSpmdContext ctx;
prepare_ctx(&ctx, args);
return self.InferBackward(ctx);
}

} // namespace pybind
} // namespace paddle
37 changes: 12 additions & 25 deletions test/auto_parallel/spmd_rules/test_default_data_parallel_rule.py
Original file line number Diff line number Diff line change
Expand Up @@ -61,11 +61,8 @@ def test_default_dp_infer_forward(self):
# 2 inputs 2 outputs, sharded batch axis
in_vec = [self.x_dist_tensor_spec, self.y_dist_tensor_spec]
out_vec = [self.out1_dist_tensor_spec, self.out2_dist_tensor_spec]
result_dist_attrs = self.rule.infer_forward(
[(0, len(in_vec)), (len(in_vec), len(in_vec) + len(out_vec))],
in_vec + out_vec,
[],
)
result_dist_attrs = self.rule.infer_forward(in_vec, out_vec)

self.assertEqual(len(result_dist_attrs), 2)
self.assertEqual(len(result_dist_attrs[0]), 2)
self.assertEqual(len(result_dist_attrs[1]), 2)
Expand All @@ -82,11 +79,9 @@ def test_default_dp_infer_forward(self):
self.out1_dist_tensor_spec,
self.out2_dist_tensor_spec,
]
result_dist_attrs = self.rule.infer_forward(
[(0, len(in_vec)), (len(in_vec), len(in_vec) + len(out_vec))],
in_vec + out_vec,
[],
)

result_dist_attrs = self.rule.infer_forward(in_vec, out_vec)

self.assertEqual(len(result_dist_attrs), 2)
self.assertEqual(len(result_dist_attrs[0]), 1)
self.assertEqual(len(result_dist_attrs[1]), 3)
Expand All @@ -103,11 +98,7 @@ def test_default_dp_infer_forward(self):
in_vec = [self.x_dist_tensor_spec, self.y_dist_tensor_spec]
out_vec = [self.out1_dist_tensor_spec, self.out2_dist_tensor_spec]
with self.assertRaises(NotImplementedError):
result_dist_attrs = self.rule.infer_forward(
[(0, len(in_vec)), (len(in_vec), len(in_vec) + len(out_vec))],
in_vec + out_vec,
[],
)
result_dist_attrs = self.rule.infer_forward(in_vec, out_vec)

def test_default_dp_infer_backward(self):
# replicated out1 from [-1, 0, 1, -1] to [0, -1, -1, -1]
Expand All @@ -117,11 +108,9 @@ def test_default_dp_infer_backward(self):

in_vec = [self.x_dist_tensor_spec, self.y_dist_tensor_spec]
out_vec = [self.out1_dist_tensor_spec, self.out2_dist_tensor_spec]
result_dist_attrs = self.rule.infer_backward(
[(0, len(in_vec)), (len(in_vec), len(in_vec) + len(out_vec))],
in_vec + out_vec,
[],
)

result_dist_attrs = self.rule.infer_backward(in_vec, out_vec)

self.assertEqual(len(result_dist_attrs), 2)
self.assertEqual(len(result_dist_attrs[0]), 2)
self.assertEqual(len(result_dist_attrs[1]), 2)
Expand All @@ -137,11 +126,9 @@ def test_default_dp_infer_backward(self):

in_vec = [self.x_dist_tensor_spec, self.y_dist_tensor_spec]
out_vec = [self.out1_dist_tensor_spec, self.out2_dist_tensor_spec]
result_dist_attrs = self.rule.infer_backward(
[(0, len(in_vec)), (len(in_vec), len(in_vec) + len(out_vec))],
in_vec + out_vec,
[],
)

result_dist_attrs = self.rule.infer_backward(in_vec, out_vec)

self.assertEqual(len(result_dist_attrs), 2)
self.assertEqual(len(result_dist_attrs[0]), 2)
self.assertEqual(len(result_dist_attrs[1]), 2)
Expand Down
Loading