Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[NewComm]No.7 compatiable upgrade for global_gather_op. #57305

Merged
merged 1 commit into from
Sep 15, 2023
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
114 changes: 86 additions & 28 deletions paddle/fluid/operators/collective/global_gather_op.cu.cc
Original file line number Diff line number Diff line change
@@ -18,7 +18,12 @@ limitations under the License. */
#include "paddle/fluid/platform/collective_helper.h"
#include "paddle/fluid/platform/device/gpu/nccl_helper.h"
#endif
#include "paddle/fluid/distributed/collective/utils.h"
#include "paddle/fluid/framework/convert_utils.h"
#include "paddle/phi/core/distributed/comm_context_manager.h"
#include "paddle/phi/core/distributed/nccl_comm_context.h"
#include "paddle/phi/core/flags.h"
PHI_DECLARE_bool(dynamic_static_unified_comm);

namespace paddle {
namespace operators {
@@ -79,15 +84,42 @@ struct GlobalGatherFunctor<phi::GPUContext, T> {
"The ring_id (%d) for global gather op must be non-negative.",
ring_id));
auto place = ctx.GetPlace();
auto comm = platform::NCCLCommContext::Instance().Get(ring_id, place);
gpuStream_t stream = nullptr;

platform::NCCLComm* comm = nullptr;
phi::distributed::NCCLCommContext* comm_ctx = nullptr;
int nranks = 0;
const auto& comm_context_manager =
phi::distributed::CommContextManager::GetInstance();
if (FLAGS_dynamic_static_unified_comm) {
PADDLE_ENFORCE_EQ(comm_context_manager.Has(std::to_string(ring_id)),
true,
platform::errors::InvalidArgument(
"You choose to use new communication library by "
"setting environment "
"variable FLAGS_dynamic_static_unified_comm "
"True. But ring_id(%d) is "
"not found in comm_context_manager.",
std::to_string(ring_id)));
comm_ctx = static_cast<phi::distributed::NCCLCommContext*>(
comm_context_manager.Get(std::to_string(ring_id)));
PADDLE_ENFORCE_NE(comm_ctx,
nullptr,
platform::errors::Unavailable(
"NCCLCommContext is nullptr, collective op should "
"has ring_id attr."));
stream = comm_ctx->GetStream();
nranks = comm_ctx->GetSize();
} else {
comm = platform::NCCLCommContext::Instance().Get(ring_id, place);
stream = comm->stream();
nranks = comm->nranks();
}
if (ctx.Attr<bool>("use_calc_stream")) {
// should ExecutionContext for calc stream.
stream = ctx.cuda_device_context().stream();
} else {
stream = comm->stream();
}
int nranks = comm->nranks();

auto in_feat = x->dims()[1];
auto n_expert = local_count->dims()[0] / nranks;

@@ -104,34 +136,60 @@ struct GlobalGatherFunctor<phi::GPUContext, T> {
expert_ptr[i] = expert_ptr[i - 1] + cpu_local_count_data[i - 1];
}
auto send_ptr = 0;
auto send_buf = x->data<T>();
auto recv_buf = out->mutable_data<T>(out_dims, place);
out->mutable_data<T>(out_dims, place);

for (auto i = 0; i < n_expert; ++i) {
PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclGroupStart());
for (auto j = 0; j < nranks; ++j) {
int idx = i + j * n_expert;
if (cpu_global_count_data[idx]) {
PADDLE_ENFORCE_GPU_SUCCESS(
platform::dynload::ncclSend(send_buf + send_ptr * in_feat,
cpu_global_count_data[idx] * in_feat,
dtype,
j,
comm->comm(),
stream));
send_ptr += cpu_global_count_data[idx];
if (comm_ctx) {
for (auto i = 0; i < n_expert; ++i) {
comm_ctx->GroupStart();
for (auto j = 0; j < nranks; ++j) {
int idx = i + j * n_expert;
if (cpu_global_count_data[idx]) {
auto send_buf = distributed::GetPartialTensor(
*x, send_ptr * in_feat, cpu_global_count_data[idx] * in_feat);
comm_ctx->Send(
send_buf, cpu_global_count_data[idx] * in_feat, j, stream);
send_ptr += cpu_global_count_data[idx];
}
if (cpu_local_count_data[idx]) {
auto recv_buf = distributed::GetPartialTensor(
*out,
expert_ptr[idx] * in_feat,
cpu_local_count_data[idx] * in_feat);
comm_ctx->Recv(
&recv_buf, cpu_local_count_data[idx] * in_feat, j, stream);
}
}
if (cpu_local_count_data[idx]) {
PADDLE_ENFORCE_GPU_SUCCESS(
platform::dynload::ncclRecv(recv_buf + expert_ptr[idx] * in_feat,
cpu_local_count_data[idx] * in_feat,
dtype,
j,
comm->comm(),
stream));
comm_ctx->GroupEnd();
}
} else {
auto send_buf = x->data<T>();
auto recv_buf = out->data<T>();
for (auto i = 0; i < n_expert; ++i) {
PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclGroupStart());
for (auto j = 0; j < nranks; ++j) {
int idx = i + j * n_expert;
if (cpu_global_count_data[idx]) {
PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclSend(
send_buf + send_ptr * in_feat,
cpu_global_count_data[idx] * in_feat,
dtype,
j,
comm->comm(),
stream));
send_ptr += cpu_global_count_data[idx];
}
if (cpu_local_count_data[idx]) {
PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclRecv(
recv_buf + expert_ptr[idx] * in_feat,
cpu_local_count_data[idx] * in_feat,
dtype,
j,
comm->comm(),
stream));
}
}
PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclGroupEnd());
}
PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclGroupEnd());
}
#else
PADDLE_THROW(
35 changes: 33 additions & 2 deletions test/collective/collective_global_gather.py
Original file line number Diff line number Diff line change
@@ -56,13 +56,40 @@ def get_model(self, main_prog, startup_program, rank, indata=None):

return [output]

def get_model_new_comm(self, main_prog, startup_program, rank, indata=None):
with base.program_guard(main_prog, startup_program):
seed = os.getpid()
np.random.seed(seed)
in_feat = 2
n_expert = 2
world_size = 2
tot_expert = n_expert * world_size
local_input_buf = paddle.static.data(
name="local_input_buf", shape=[-1, in_feat], dtype="float32"
)
local_expert_count = paddle.static.data(
name="local_expert_count", shape=[tot_expert], dtype="int64"
)
global_expert_count = paddle.static.data(
name="global_expert_count", shape=[tot_expert], dtype="int64"
)

output = moe_utils.global_gather(
local_input_buf, local_expert_count, global_expert_count
)

return [output]

def run_trainer(self, args):
train_prog = base.Program()
startup_prog = base.Program()
endpoints = args["endpoints"].split(",")
rank = args["trainerid"]
current_endpoint = args["currentendpoint"]
paddle.distributed.init_parallel_env()
if args["dynamic_static_unified_comm"]:
paddle.distributed.collective._init_parallel_env(args["backend"])
else:
paddle.distributed.init_parallel_env()
nranks = 2
if args['backend'] == 'nccl':
device_id = int(os.getenv("FLAGS_selected_gpus", "0"))
@@ -109,7 +136,11 @@ def run_trainer(self, args):
)

if args['static_mode']:
result = self.get_model(train_prog, startup_prog, rank)
result = (
self.get_model_new_comm(train_prog, startup_prog, rank)
if args["dynamic_static_unified_comm"]
else self.get_model(train_prog, startup_prog, rank)
)
fetch_list = []
for elem in result:
fetch_list.append(elem.name)
9 changes: 9 additions & 0 deletions test/collective/test_collective_global_gather.py
Original file line number Diff line number Diff line change
@@ -38,6 +38,15 @@ def test_global_gather_nccl_dygraph_eager(self):
eager_mode=True,
)

def test_global_gather_nccl_new_comm(self):
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

还需要修改collective_global_gather.py。可以参考#57161

paddle.enable_static()
self.check_with_place(
"collective_global_gather.py",
"global_gather",
"nccl",
need_envs={"FLAGS_dynamic_static_unified_comm": "1"},
)


if __name__ == '__main__':
unittest.main()