Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[PIR] Support translate IfOp #57342

Merged
merged 16 commits into from
Sep 16, 2023

Conversation

zhangbo9674
Copy link
Contributor

@zhangbo9674 zhangbo9674 commented Sep 14, 2023

PR types

New features

PR changes

Others

Description

本 PR 用于支持将旧 Program 体系的 condition_block 算子 translate 为 Pir 的 IfOp;
示例模型为一个 if 嵌套 if 的模型结构,模型代码如下:

import paddle
paddle.enable_static()
def true_func():
    x = paddle.full(shape=[1], dtype='float32', fill_value=0.1)
    y = paddle.full(shape=[1], dtype='float32', fill_value=0.23)
    pred = paddle.less_than(x=x, y=y, name=None)
    out = paddle.static.nn.cond(pred, lambda: x + y, lambda: x * y)
    z = x * y 
    return x, z

def false_func():
    x = paddle.full(shape=[1], dtype='float32', fill_value=0.1)
    y = paddle.full(shape=[1], dtype='float32', fill_value=0.23)
    pred = paddle.less_than(x=x, y=y, name=None)
    out = paddle.static.nn.cond(pred, lambda: x + y, lambda: x * y)
    z = x * y 
    return y, z

train_program = paddle.static.Program()
startup_program = paddle.static.Program()
with paddle.static.program_guard(train_program, startup_program):
    x = paddle.full(shape=[1], dtype='float32', fill_value=0.1)
    y = paddle.full(shape=[1], dtype='float32', fill_value=0.23)
    pred = paddle.less_than(x=x, y=y, name=None)
    out1, out2 = paddle.static.nn.cond(pred, true_func, false_func)

旧 Program:

{ // block 0
    ...
    {Out=['fill_constant_1.tmp_0']} = fill_constant(inputs={ShapeTensor=[], ShapeTensorList=[], ValueTensor=[]}, dtype = 5, force_cpu = False, op_device = , op_namescope = /, op_role = 0, op_role_var = [], place_type = -1, shape = [1], str_value = 0.1, value = 0.10000000149011612, with_quant_attr = False)
    {Out=['fill_constant_3.tmp_0']} = fill_constant(inputs={ShapeTensor=[], ShapeTensorList=[], ValueTensor=[]}, dtype = 5, force_cpu = False, op_device = , op_namescope = /, op_role = 0, op_role_var = [], place_type = -1, shape = [1], str_value = 0.23, value = 0.23000000417232513, with_quant_attr = False)
    {Out=['less_than_0.tmp_0']} = less_than(inputs={X=['fill_constant_1.tmp_0'], Y=['fill_constant_3.tmp_0']}, axis = -1, force_cpu = False, op_device = , op_namescope = /, op_role = 0, op_role_var = [], with_quant_attr = False)
    {Out=['_generated_var_6', '_generated_var_5'], Scope=['_generated_var_7']} = conditional_block(inputs={Cond=['less_than_0.tmp_0'], Input=[]}, is_scalar_condition = True, op_device = , op_namescope = /, op_role = 0, op_role_var = [], sub_block = block[1], with_quant_attr = False)
    {Out=['logical_not_1.tmp_0']} = logical_not(inputs={X=['less_than_0.tmp_0']}, op_device = , op_namescope = /, op_role = 0, op_role_var = [], with_quant_attr = False)
    {Out=['_generated_var_13', '_generated_var_14'], Scope=['_generated_var_15']} = conditional_block(inputs={Cond=['logical_not_1.tmp_0'], Input=[]}, is_scalar_condition = True, op_device = , op_namescope = /, op_role = 0, op_role_var = [], sub_block = block[4], with_quant_attr = False)
    {Out=['cast_2.tmp_0']} = cast(inputs={X=['less_than_0.tmp_0']}, in_dtype = 0, op_device = , op_namescope = /, op_role = 0, op_role_var = [], out_dtype = 2, use_mkldnn = False, with_quant_attr = False)
    {Out=['_generated_var_16']} = select_input(inputs={Mask=['cast_2.tmp_0'], X=['_generated_var_13', '_generated_var_5']}, op_device = , op_namescope = /, op_role = 0, op_role_var = [], with_quant_attr = False)
    {Out=['_generated_var_17']} = select_input(inputs={Mask=['cast_2.tmp_0'], X=['_generated_var_14', '_generated_var_6']}, op_device = , op_namescope = /, op_role = 0, op_role_var = [], with_quant_attr = False)
}
{ // block 1
    ...
    {Out=['fill_constant_5.tmp_0']} = fill_constant(inputs={ShapeTensor=[], ShapeTensorList=[], ValueTensor=[]}, dtype = 5, force_cpu = False, op_device = , op_namescope = /, op_role = 0, op_role_var = [], place_type = -1, shape = [1], str_value = 0.1, value = 0.10000000149011612, with_quant_attr = False)
    {Out=['fill_constant_7.tmp_0']} = fill_constant(inputs={ShapeTensor=[], ShapeTensorList=[], ValueTensor=[]}, dtype = 5, force_cpu = False, op_device = , op_namescope = /, op_role = 0, op_role_var = [], place_type = -1, shape = [1], str_value = 0.23, value = 0.23000000417232513, with_quant_attr = False)
    {Out=['less_than_1.tmp_0']} = less_than(inputs={X=['fill_constant_5.tmp_0'], Y=['fill_constant_7.tmp_0']}, axis = -1, force_cpu = False, op_device = , op_namescope = /, op_role = 0, op_role_var = [], with_quant_attr = False)
    {Out=['_generated_var_0'], Scope=['_generated_var_1']} = conditional_block(inputs={Cond=['less_than_1.tmp_0'], Input=['fill_constant_5.tmp_0', 'fill_constant_7.tmp_0']}, is_scalar_condition = True, op_device = , op_namescope = /, op_role = 0, op_role_var = [], sub_block = block[2], with_quant_attr = False)
    {Out=['logical_not_0.tmp_0']} = logical_not(inputs={X=['less_than_1.tmp_0']}, op_device = , op_namescope = /, op_role = 0, op_role_var = [], with_quant_attr = False)
    {Out=['_generated_var_2'], Scope=['_generated_var_3']} = conditional_block(inputs={Cond=['logical_not_0.tmp_0'], Input=['fill_constant_5.tmp_0', 'fill_constant_7.tmp_0']}, is_scalar_condition = True, op_device = , op_namescope = /, op_role = 0, op_role_var = [], sub_block = block[3], with_quant_attr = False)
    {Out=['cast_0.tmp_0']} = cast(inputs={X=['less_than_1.tmp_0']}, in_dtype = 0, op_device = , op_namescope = /, op_role = 0, op_role_var = [], out_dtype = 2, use_mkldnn = False, with_quant_attr = False)
    {Out=['_generated_var_4']} = select_input(inputs={Mask=['cast_0.tmp_0'], X=['_generated_var_2', '_generated_var_0']}, op_device = , op_namescope = /, op_role = 0, op_role_var = [], with_quant_attr = False)
    {Out=['tmp_2']} = elementwise_mul(inputs={X=['fill_constant_5.tmp_0'], Y=['fill_constant_7.tmp_0']}, axis = -1, op_device = , op_namescope = /, op_role = 0, op_role_var = [], with_quant_attr = False)
    {Out=['_generated_var_5']} = assign(inputs={X=['fill_constant_5.tmp_0']}, op_device = , op_namescope = /, op_role = 0, op_role_var = [], with_quant_attr = False)
    {Out=['_generated_var_6']} = assign(inputs={X=['tmp_2']}, op_device = , op_namescope = /, op_role = 0, op_role_var = [], with_quant_attr = False)
}
{ // block 2
   ...
    {Out=['tmp_0']} = elementwise_add(inputs={X=['fill_constant_5.tmp_0'], Y=['fill_constant_7.tmp_0']}, axis = -1, op_device = , op_namescope = /, op_role = 0, op_role_var = [], with_quant_attr = False)
    {Out=['_generated_var_0']} = assign(inputs={X=['tmp_0']}, op_device = , op_namescope = /, op_role = 0, op_role_var = [], with_quant_attr = False)
}
{ // block 3
    ...
    {Out=['tmp_1']} = elementwise_mul(inputs={X=['fill_constant_5.tmp_0'], Y=['fill_constant_7.tmp_0']}, axis = -1, op_device = , op_namescope = /, op_role = 0, op_role_var = [], with_quant_attr = False)
    {Out=['_generated_var_2']} = assign(inputs={X=['tmp_1']}, op_device = , op_namescope = /, op_role = 0, op_role_var = [], with_quant_attr = False)
}
{ // block 4
    ...
    {Out=['fill_constant_9.tmp_0']} = fill_constant(inputs={ShapeTensor=[], ShapeTensorList=[], ValueTensor=[]}, dtype = 5, force_cpu = False, op_device = , op_namescope = /, op_role = 0, op_role_var = [], place_type = -1, shape = [1], str_value = 0.1, value = 0.10000000149011612, with_quant_attr = False)
    {Out=['fill_constant_11.tmp_0']} = fill_constant(inputs={ShapeTensor=[], ShapeTensorList=[], ValueTensor=[]}, dtype = 5, force_cpu = False, op_device = , op_namescope = /, op_role = 0, op_role_var = [], place_type = -1, shape = [1], str_value = 0.23, value = 0.23000000417232513, with_quant_attr = False)
    {Out=['less_than_2.tmp_0']} = less_than(inputs={X=['fill_constant_9.tmp_0'], Y=['fill_constant_11.tmp_0']}, axis = -1, force_cpu = False, op_device = , op_namescope = /, op_role = 0, op_role_var = [], with_quant_attr = False)
    {Out=['_generated_var_8'], Scope=['_generated_var_9']} = conditional_block(inputs={Cond=['less_than_2.tmp_0'], Input=['fill_constant_11.tmp_0', 'fill_constant_9.tmp_0']}, is_scalar_condition = True, op_device = , op_namescope = /, op_role = 0, op_role_var = [], sub_block = block[5], with_quant_attr = False)
    {Out=['logical_not_2.tmp_0']} = logical_not(inputs={X=['less_than_2.tmp_0']}, op_device = , op_namescope = /, op_role = 0, op_role_var = [], with_quant_attr = False)
    {Out=['_generated_var_10'], Scope=['_generated_var_11']} = conditional_block(inputs={Cond=['logical_not_2.tmp_0'], Input=['fill_constant_11.tmp_0', 'fill_constant_9.tmp_0']}, is_scalar_condition = True, op_device = , op_namescope = /, op_role = 0, op_role_var = [], sub_block = block[6], with_quant_attr = False)
    {Out=['cast_1.tmp_0']} = cast(inputs={X=['less_than_2.tmp_0']}, in_dtype = 0, op_device = , op_namescope = /, op_role = 0, op_role_var = [], out_dtype = 2, use_mkldnn = False, with_quant_attr = False)
    {Out=['_generated_var_12']} = select_input(inputs={Mask=['cast_1.tmp_0'], X=['_generated_var_10', '_generated_var_8']}, op_device = , op_namescope = /, op_role = 0, op_role_var = [], with_quant_attr = False)
    {Out=['tmp_5']} = elementwise_mul(inputs={X=['fill_constant_9.tmp_0'], Y=['fill_constant_11.tmp_0']}, axis = -1, op_device = , op_namescope = /, op_role = 0, op_role_var = [], with_quant_attr = False)
    {Out=['_generated_var_13']} = assign(inputs={X=['fill_constant_11.tmp_0']}, op_device = , op_namescope = /, op_role = 0, op_role_var = [], with_quant_attr = False)
    {Out=['_generated_var_14']} = assign(inputs={X=['tmp_5']}, op_device = , op_namescope = /, op_role = 0, op_role_var = [], with_quant_attr = False)
}
{ // block 5
    ...
    {Out=['tmp_3']} = elementwise_add(inputs={X=['fill_constant_9.tmp_0'], Y=['fill_constant_11.tmp_0']}, axis = -1, op_device = , op_namescope = /, op_role = 0, op_role_var = [], with_quant_attr = False)
    {Out=['_generated_var_8']} = assign(inputs={X=['tmp_3']}, op_device = , op_namescope = /, op_role = 0, op_role_var = [], with_quant_attr = False)
}
{ // block 6
    ...
    {Out=['tmp_4']} = elementwise_mul(inputs={X=['fill_constant_9.tmp_0'], Y=['fill_constant_11.tmp_0']}, axis = -1, op_device = , op_namescope = /, op_role = 0, op_role_var = [], with_quant_attr = False)
    {Out=['_generated_var_10']} = assign(inputs={X=['tmp_4']}, op_device = , op_namescope = /, op_role = 0, op_role_var = [], with_quant_attr = False)
}

翻译之后的 Program

{
    (%0) = "pd_op.full" () {dtype:(pd_op.DataType)float32,is_persisable:(Array)[false],place:(pd_op.Place)Place(undefined:0),shape:(pd_op.IntArray)[1],stop_gradient:(Array)[true],value:(Float)0.1} : () -> pd_op.tensor<1xf32>
    (%1) = "pd_op.full" () {dtype:(pd_op.DataType)float32,is_persisable:(Array)[false],place:(pd_op.Place)Place(undefined:0),shape:(pd_op.IntArray)[1],stop_gradient:(Array)[true],value:(Float)0.23} : () -> pd_op.tensor<1xf32>
    (%2) = "pd_op.less_than" (%0, %1) {is_persisable:(Array)[false],stop_gradient:(Array)[true]} : (pd_op.tensor<1xf32>, pd_op.tensor<1xf32>) -> pd_op.tensor<1xb>
    (%3, %4) = pd_op.if (%2) -> pd_op.tensor<1xf32>, pd_op.tensor<1xf32>{
        (%5) = "pd_op.full" () {dtype:(pd_op.DataType)float32,is_persisable:(Array)[false],place:(pd_op.Place)Place(undefined:0),shape:(pd_op.IntArray)[1],stop_gradient:(Array)[true],value:(Float)0.1} : () -> pd_op.tensor<1xf32>
        (%6) = "pd_op.full" () {dtype:(pd_op.DataType)float32,is_persisable:(Array)[false],place:(pd_op.Place)Place(undefined:0),shape:(pd_op.IntArray)[1],stop_gradient:(Array)[true],value:(Float)0.23} : () -> pd_op.tensor<1xf32>
        (%7) = "pd_op.less_than" (%5, %6) {is_persisable:(Array)[false],stop_gradient:(Array)[true]} : (pd_op.tensor<1xf32>, pd_op.tensor<1xf32>) -> pd_op.tensor<1xb>
        (%8) = pd_op.if (%7) -> pd_op.tensor<1xf32>{
            (%9) = "pd_op.add" (%5, %6) {is_persisable:(Array)[false],stop_gradient:(Array)[true]} : (pd_op.tensor<1xf32>, pd_op.tensor<1xf32>) -> pd_op.tensor<1xf32>
            () = "cf.yield" (%9) {} : (pd_op.tensor<1xf32>) -> 
        } else {
            (%10) = "pd_op.multiply" (%5, %6) {is_persisable:(Array)[false],stop_gradient:(Array)[true]} : (pd_op.tensor<1xf32>, pd_op.tensor<1xf32>) -> pd_op.tensor<1xf32>
            () = "cf.yield" (%10) {} : (pd_op.tensor<1xf32>) -> 
        }
        (%11) = "pd_op.multiply" (%5, %6) {is_persisable:(Array)[false],stop_gradient:(Array)[true]} : (pd_op.tensor<1xf32>, pd_op.tensor<1xf32>) -> pd_op.tensor<1xf32>
        () = "cf.yield" (%5, %11) {} : (pd_op.tensor<1xf32>, pd_op.tensor<1xf32>) -> 
    } else {
        (%12) = "pd_op.full" () {dtype:(pd_op.DataType)float32,is_persisable:(Array)[false],place:(pd_op.Place)Place(undefined:0),shape:(pd_op.IntArray)[1],stop_gradient:(Array)[true],value:(Float)0.1} : () -> pd_op.tensor<1xf32>
        (%13) = "pd_op.full" () {dtype:(pd_op.DataType)float32,is_persisable:(Array)[false],place:(pd_op.Place)Place(undefined:0),shape:(pd_op.IntArray)[1],stop_gradient:(Array)[true],value:(Float)0.23} : () -> pd_op.tensor<1xf32>
        (%14) = "pd_op.less_than" (%12, %13) {is_persisable:(Array)[false],stop_gradient:(Array)[true]} : (pd_op.tensor<1xf32>, pd_op.tensor<1xf32>) -> pd_op.tensor<1xb>
        (%15) = pd_op.if (%14) -> pd_op.tensor<1xf32>{
            (%16) = "pd_op.add" (%12, %13) {is_persisable:(Array)[false],stop_gradient:(Array)[true]} : (pd_op.tensor<1xf32>, pd_op.tensor<1xf32>) -> pd_op.tensor<1xf32>
            () = "cf.yield" (%16) {} : (pd_op.tensor<1xf32>) -> 
        } else {
            (%17) = "pd_op.multiply" (%12, %13) {is_persisable:(Array)[false],stop_gradient:(Array)[true]} : (pd_op.tensor<1xf32>, pd_op.tensor<1xf32>) -> pd_op.tensor<1xf32>
            () = "cf.yield" (%17) {} : (pd_op.tensor<1xf32>) -> 
        }
        (%18) = "pd_op.multiply" (%12, %13) {is_persisable:(Array)[false],stop_gradient:(Array)[true]} : (pd_op.tensor<1xf32>, pd_op.tensor<1xf32>) -> pd_op.tensor<1xf32>
        () = "cf.yield" (%13, %18) {} : (pd_op.tensor<1xf32>, pd_op.tensor<1xf32>) -> 
    }
}

Other

Pcard-67164

@paddle-bot
Copy link

paddle-bot bot commented Sep 14, 2023

你的PR提交成功,感谢你对开源项目的贡献!
请关注后续CI自动化测试结果,详情请参考Paddle-CI手册
Your PR has been submitted. Thanks for your contribution!
Please wait for the result of CI firstly. See Paddle CI Manual for details.

@zhangbo9674 zhangbo9674 reopened this Sep 15, 2023
@PaddlePaddle PaddlePaddle locked and limited conversation to collaborators Sep 15, 2023
@PaddlePaddle PaddlePaddle unlocked this conversation Sep 15, 2023
winter-wang
winter-wang previously approved these changes Sep 15, 2023
Copy link
Contributor

@winter-wang winter-wang left a comment

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

LGTM

Copy link
Contributor

@winter-wang winter-wang left a comment

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

LGTM

@zhangbo9674 zhangbo9674 merged commit db901f9 into PaddlePaddle:develop Sep 16, 2023
danleifeng pushed a commit to danleifeng/Paddle that referenced this pull request Nov 14, 2023
* add code

* refine code

* add code

* add code

* fix bug

* add code

* add code

* add code

* add code

* add code

* add code

* addd code

* refine code

* refine code

* fix conflict
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

Successfully merging this pull request may close these issues.

3 participants