Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

【Hackathon 5 No.21】Add LinearLR to Paddle #57724

Merged
merged 9 commits into from
Oct 13, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
120 changes: 120 additions & 0 deletions python/paddle/optimizer/lr.py
Original file line number Diff line number Diff line change
Expand Up @@ -45,6 +45,7 @@
'MultiplicativeDecay',
'OneCycleLR',
'CyclicLR',
'LinearLR',
]


Expand Down Expand Up @@ -2229,6 +2230,125 @@ def get_lr(self):
return lr


class LinearLR(LRScheduler):
r"""
Set the learning rate according to linear scheduler.
The learning rate will be firstly multiplied by start_factor and linearly increase to end learning rate.

Args:
learning_rate (float): The initial learning rate. It is a python float number.
total_steps (int): Number of iterations that the learning_rate reaches end learning_rate.
start_factor (float): Start learning rate is defined by `start_factor * learning_rate` . Default: 1./3.
end_factor (float) End learning rate is defined by `end_factor * learning_rate`. Default: 1.0.
last_epoch (int, optional): The index of last epoch. Can be set to restart training.Default: -1, means initial learning rate.
verbose: (bool, optional): If ``True``, prints a message to stdout for each update. Default: ``False`` .

Returns:
``LinearLR`` instance to schedule learning rate.

Examples:
.. code-block:: python
:name: code-dynamic

>>> # Example1: train on default dynamic graph mode
>>> import paddle
>>> import numpy as np

>>> # train on default dynamic graph mode
>>> linear = paddle.nn.Linear(10, 10)
>>> scheduler = paddle.optimizer.lr.LinearLR(learning_rate=0.5, total_steps=5, verbose=True)
>>> sgd = paddle.optimizer.SGD(learning_rate=scheduler, parameters=linear.parameters())
>>> for epoch in range(5):
... for batch_id in range(20):
... x = paddle.uniform([10, 10])
... out = linear(x)
... loss = paddle.mean(out)
... loss.backward()
... sgd.step()
... sgd.clear_gradients()
... scheduler.step()

.. code-block:: python
:name: code-static

>>> # Example2: train on static graph mode
>>> import paddle
>>> import numpy as np
>>> paddle.enable_static()
>>> main_prog = paddle.static.Program()
>>> start_prog = paddle.static.Program()
>>> with paddle.static.program_guard(main_prog, start_prog):
... x = paddle.static.data(name='x', shape=[None, 4, 5])
... y = paddle.static.data(name='y', shape=[None, 4, 5])
... z = paddle.static.nn.fc(x, 100)
... loss = paddle.mean(z)
... scheduler = paddle.optimizer.lr.LinearLR(learning_rate=0.5,
... total_steps=5, verbose=True)
... sgd = paddle.optimizer.SGD(learning_rate=scheduler)
... sgd.minimize(loss)
...
>>> exe = paddle.static.Executor()
>>> exe.run(start_prog)
>>> for epoch in range(5):
... for batch_id in range(20):
... out = exe.run(
... main_prog,
... feed={
... 'x': np.random.randn(3, 4, 5).astype('float32'),
... 'y': np.random.randn(3, 4, 5).astype('float32')
... },
... fetch_list=loss.name)
... scheduler.step()
"""

def __init__(
self,
learning_rate,
Asthestarsfalll marked this conversation as resolved.
Show resolved Hide resolved
total_steps,
start_factor=1.0 / 3,
end_factor=1.0,
last_epoch=-1,
verbose=False,
):
if start_factor > 1.0 or start_factor <= 0:
raise ValueError(
"`start_factor` must be greater than 0 and less or equal to 1, but got {}".format(
start_factor
)
)

if end_factor > 1.0 or end_factor < 0:
raise ValueError(
"`end_factor` must be greater than 0 and less than 1, but got {}".format(
end_factor
)
)

if total_steps <= 0:
raise ValueError(
f"`total_steps` must be greater than 0, but got {total_steps}"
)

self.start_factor = start_factor
self.end_factor = end_factor
self.total_steps = total_steps

super().__init__(learning_rate, last_epoch, verbose)

def get_lr(self):
if self.last_epoch == 0:
return self.base_lr * self.start_factor
elif self.last_epoch > self.total_steps:
return self.last_lr
else:
base_lr = self.total_steps * self.start_factor
cur_factor = self.end_factor - self.start_factor
factor = 1.0 + cur_factor / (
base_lr + (self.last_epoch - 1) * cur_factor
)
return self.last_lr * factor


def autoincreased_step_counter(counter_name=None, begin=1, step=1):
"""
:api_attr: Static Graph
Expand Down
60 changes: 60 additions & 0 deletions test/legacy_test/test_lr_scheduler.py
Original file line number Diff line number Diff line change
Expand Up @@ -464,6 +464,31 @@ def exp_range(x):
return base_learning_rate + base_height * scale_fn(eval(scale_mode))


linear_last_lr = None


def linear_lr(
epoch_num,
learning_rate,
total_steps,
start_factor=1.0 / 3,
end_factor=1.0,
verbose=False,
):
global linear_last_lr
if epoch_num == 0:
linear_last_lr = learning_rate * start_factor
return linear_last_lr
elif epoch_num > total_steps:
return linear_last_lr
else:
base_lr = total_steps * start_factor
cur_factor = end_factor - start_factor
factor = 1.0 + cur_factor / (base_lr + (epoch_num - 1) * cur_factor)
linear_last_lr *= factor
return linear_last_lr


class TestLRScheduler(unittest.TestCase):
def _test_static(self, python_func, paddle_api, kwarg, place):
scheduler = paddle_api(**kwarg)
Expand Down Expand Up @@ -711,6 +736,19 @@ def test_scheduler(self):
paddle.optimizer.lr.PiecewiseDecay(
boundaries=[100, 200], values=[0.5, 0.1]
)
# check minus total_steps
with self.assertRaises(ValueError):
paddle.optimizer.lr.LinearLR(learning_rate=1, total_steps=-1)
# check start_factor
with self.assertRaises(ValueError):
paddle.optimizer.lr.LinearLR(
learning_rate=1, total_steps=5, start_factor=2
)
# check end_factor
with self.assertRaises(ValueError):
paddle.optimizer.lr.LinearLR(
learning_rate=1, total_steps=5, end_factor=2
)

func_api_kwargs = [
(
Expand Down Expand Up @@ -944,6 +982,28 @@ def test_scheduler(self):
"verbose": False,
},
),
(
linear_lr,
paddle.optimizer.lr.LinearLR,
{
"learning_rate": 0.2,
"total_steps": 40,
"start_factor": 0.5,
"end_factor": 1,
"verbose": False,
},
),
(
linear_lr,
paddle.optimizer.lr.LinearLR,
{
"learning_rate": 0.2,
"total_steps": 5,
"start_factor": 0.2,
"end_factor": 0.5,
"verbose": False,
},
),
]

for python_func, paddle_api, kwarg in func_api_kwargs:
Expand Down