Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[AutoParallel] Verify auto parallel in amp mode #58172

Merged
merged 5 commits into from
Oct 19, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Original file line number Diff line number Diff line change
Expand Up @@ -74,6 +74,12 @@ MultiplyGradNode::operator()(
// Runtime check if we need next grad
bool trace_backward = egr::Controller::Instance().HasGrad() && create_graph;

// Set DistAttr of Out Tensor for semi-auto parallel
if (IsRunAutoParallel()) {
egr::EagerUtils::SetGradOutputDistAttr(
out_metas, {0, 1}, api_output_0, api_output_1);
}

// Inplace Check

// Inplace Strategy
Expand Down
5 changes: 5 additions & 0 deletions paddle/fluid/pybind/eager_math_op_patch.cc
Original file line number Diff line number Diff line change
Expand Up @@ -579,6 +579,11 @@ static PyObject* tensor__mul__method(TensorObject* self,
}
}

const phi::distributed::ProcessMesh* mesh = nullptr;
if (InputsContainDistTensor(&mesh, self_tensor, other_tensor)) {
ConvertAllInputsToDistTensor(mesh, self_tensor, other_tensor);
}

// 4. calculation
VLOG(6) << "Calling multiply_ad_func in tensor__mul__method";
{
Expand Down
8 changes: 7 additions & 1 deletion paddle/fluid/pybind/tensor.cc
Original file line number Diff line number Diff line change
Expand Up @@ -1038,7 +1038,13 @@ void BindTensor(pybind11::module &m) { // NOLINT
[](DistTensor &self) { return self.value(); },
py::return_value_policy::reference)
.def("numel",
[](DistTensor &self) -> int64_t { return self.value().numel(); });
[](DistTensor &self) -> int64_t { return self.value().numel(); })
.def("_share_data_with", [](DistTensor &self, const DistTensor &src) {
self.unsafe_set_dims(src.dims());
self.unsafe_set_dist_attr(src.dist_attr());
self.unsafe_mutable_value()->ShareDataWith(src.value());
return self;
});
#endif

py::class_<phi::SelectedRows>(m, "SelectedRows")
Expand Down
3 changes: 2 additions & 1 deletion paddle/phi/core/distributed/auto_parallel/dist_attr.cc
Original file line number Diff line number Diff line change
Expand Up @@ -349,7 +349,8 @@ std::string TensorDistAttr::partial_status_string() const {
}

bool TensorDistAttr::empty() const {
return process_mesh_.empty() || dims_mapping_.empty();
// dims_mapping is empty when the tensor is 0-dim, but it is also be valid.
return process_mesh_.empty();
}

std::vector<std::shared_ptr<PlacementStatus>> TensorDistAttr::to_placement()
Expand Down
10 changes: 5 additions & 5 deletions paddle/phi/core/distributed/auto_parallel/dist_meta_tensor.cc
Original file line number Diff line number Diff line change
Expand Up @@ -22,11 +22,11 @@ namespace distributed {
phi::DDim DistMetaTensor::dims() const {
// member values in tensor_ have higher priority than those in DistMetaTensor
if (tensor_ != nullptr) {
PADDLE_ENFORCE_EQ(this->is_dist(),
true,
phi::errors::InvalidArgument(
"The current MetaTensor doesn't contains "
"DistTensor when call `dist_attr` method."));
PADDLE_ENFORCE_EQ(
this->is_dist(),
true,
phi::errors::InvalidArgument("The current MetaTensor doesn't contains "
"DistTensor when call `dims` method."));
return MetaTensor::dims();
} else {
return dims_;
Expand Down
18 changes: 9 additions & 9 deletions test/auto_parallel/semi_auto_parallel_simple_net.py
Original file line number Diff line number Diff line change
Expand Up @@ -28,19 +28,19 @@

# TODO(chenweihang): update to MLP Layer later
class DemoNet(nn.Layer):
def __init__(self, np_w0, np_w1):
def __init__(self, np_w0, np_w1, param_suffix=""):
super().__init__()
self.w0 = self.create_parameter(
shape=[IMAGE_SIZE, IMAGE_SIZE],
attr=paddle.framework.ParamAttr(
name="demo_weight_1",
name="demo_weight_1" + param_suffix,
initializer=paddle.nn.initializer.Assign(np_w0),
),
)
self.w1 = self.create_parameter(
shape=[IMAGE_SIZE, CLASS_NUM],
attr=paddle.framework.ParamAttr(
name="nemo_weight_2",
name="nemo_weight_2" + param_suffix,
initializer=paddle.nn.initializer.Assign(np_w1),
),
)
Expand All @@ -52,20 +52,20 @@ def forward(self, x):


class DPDemoNet(nn.Layer):
def __init__(self, np_w0, np_w1, mesh):
def __init__(self, np_w0, np_w1, mesh, param_suffix=""):
super().__init__()
self.mesh = mesh
self.w0 = self.create_parameter(
shape=[IMAGE_SIZE, IMAGE_SIZE],
attr=paddle.framework.ParamAttr(
name="dp_demo_weight_1",
name="dp_demo_weight_1" + param_suffix,
initializer=paddle.nn.initializer.Assign(np_w0),
),
)
self.w1 = self.create_parameter(
shape=[IMAGE_SIZE, CLASS_NUM],
attr=paddle.framework.ParamAttr(
name="dp_nemo_weight_2",
name="dp_nemo_weight_2" + param_suffix,
initializer=paddle.nn.initializer.Assign(np_w1),
),
)
Expand All @@ -85,13 +85,13 @@ def forward(self, x):


class MPDemoNet(nn.Layer):
def __init__(self, np_w0, np_w1, mesh):
def __init__(self, np_w0, np_w1, mesh, param_suffix=""):
super().__init__()
self.w0 = dist.shard_tensor(
self.create_parameter(
shape=[IMAGE_SIZE, IMAGE_SIZE],
attr=paddle.framework.ParamAttr(
name="mp_demo_weight_1",
name="mp_demo_weight_1" + param_suffix,
initializer=paddle.nn.initializer.Assign(np_w0),
),
),
Expand All @@ -101,7 +101,7 @@ def __init__(self, np_w0, np_w1, mesh):
self.create_parameter(
shape=[IMAGE_SIZE, CLASS_NUM],
attr=paddle.framework.ParamAttr(
name="mp_nemo_weight_2",
name="mp_nemo_weight_2" + param_suffix,
initializer=paddle.nn.initializer.Assign(np_w1),
),
),
Expand Down
122 changes: 122 additions & 0 deletions test/auto_parallel/semi_auto_parallel_simple_net_amp.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,122 @@
# Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os

from semi_auto_parallel_simple_net import (
DemoNet,
DPDemoNet,
MPDemoNet,
TestSimpleNetForSemiAutoParallel,
)

import paddle
import paddle.distributed as dist
from paddle import nn


class TestSimpleNetWithAmpForSemiAutoParallel(TestSimpleNetForSemiAutoParallel):
def __init__(self):
self._dtype = os.getenv("dtype")
self._backend = os.getenv("backend")
self._seed = eval(os.getenv("seed"))
self._mesh = dist.ProcessMesh([0, 1], dim_names=["x"])

paddle.set_device(self._backend)
self.init_input_data()
self.init_single_card_net_result()

def run_dynamic_amp(self, layer, level='O1'):
if level == 'O2':
layer = paddle.amp.decorate(models=layer, level='O2')
# create loss
loss_fn = nn.MSELoss()
scaler = paddle.amp.GradScaler(init_loss_scaling=1024)
# run forward and backward
image = paddle.to_tensor(self.image)

with paddle.amp.auto_cast(level=level):
out = layer(image)
label = paddle.to_tensor(self.label)
loss = loss_fn(out, label)

scaled = scaler.scale(loss)
scaled.backward()
return loss, layer.w0.grad, layer.w1.grad

def init_single_card_net_result(self):
(
self.base_loss_o1,
self.base_w0_grad_o1,
self.base_w1_grad_o1,
) = self.run_dynamic_amp(DemoNet(self.w0, self.w1, 'O1'), 'O1')
(
self.base_loss_o2,
self.base_w0_grad_o2,
self.base_w1_grad_o2,
) = self.run_dynamic_amp(DemoNet(self.w0, self.w1, 'O2'), 'O2')

def test_dp_demo_net(self):
(
self.dp_loss_o1,
self.dp_w0_grad_o1,
self.dp_w1_grad_o1,
) = self.run_dynamic_amp(
DPDemoNet(self.w0, self.w1, self._mesh, 'O1'), 'O1'
)
self.check_tensor_eq(self.dp_loss_o1, self.base_loss_o1)
self.check_tensor_eq(self.dp_w0_grad_o1, self.base_w0_grad_o1)
self.check_tensor_eq(self.dp_w1_grad_o1, self.base_w1_grad_o1)

(
self.dp_loss_o2,
self.dp_w0_grad_o2,
self.dp_w1_grad_o2,
) = self.run_dynamic_amp(
DPDemoNet(self.w0, self.w1, self._mesh, 'O2'), 'O2'
)
self.check_tensor_eq(self.dp_loss_o2, self.base_loss_o2)
self.check_tensor_eq(self.dp_w0_grad_o2, self.base_w0_grad_o2)
self.check_tensor_eq(self.dp_w1_grad_o2, self.base_w1_grad_o2)

def test_mp_demo_net(self):
(
self.mp_loss_o1,
self.mp_w0_grad_o1,
self.mp_w1_grad_o1,
) = self.run_dynamic_amp(
MPDemoNet(self.w0, self.w1, self._mesh, 'O1'), 'O1'
)
self.check_tensor_eq(self.mp_loss_o1, self.base_loss_o1)
self.check_tensor_eq(self.mp_w0_grad_o1, self.base_w0_grad_o1)
self.check_tensor_eq(self.mp_w1_grad_o1, self.base_w1_grad_o1)

(
self.mp_loss_o2,
self.mp_w0_grad_o2,
self.mp_w1_grad_o2,
) = self.run_dynamic_amp(
MPDemoNet(self.w0, self.w1, self._mesh, 'O2'), 'O2'
)
self.check_tensor_eq(self.mp_loss_o2, self.base_loss_o2)
self.check_tensor_eq(self.mp_w0_grad_o2, self.base_w0_grad_o2)
self.check_tensor_eq(self.mp_w1_grad_o2, self.base_w1_grad_o2)

def run_test_case(self):
self.test_dp_demo_net()
self.test_mp_demo_net()


if __name__ == '__main__':
TestSimpleNetWithAmpForSemiAutoParallel().run_test_case()
16 changes: 15 additions & 1 deletion test/auto_parallel/test_semi_auto_parallel_single_strategy.py
Original file line number Diff line number Diff line change
Expand Up @@ -19,7 +19,10 @@

class TestSemiAutoParallelSingleStrategy(test_base.CommunicationTestDistBase):
def setUp(self):
super().setUp(num_of_devices=2, timeout=120)
super().setUp(
num_of_devices=2,
timeout=120,
)
self._default_envs = {
"dtype": "float32",
"seed": "2023",
Expand All @@ -36,6 +39,17 @@ def test_simple_net_single_strategy(self):
user_defined_envs=envs,
)

def test_simple_net_single_strategy_with_amp(self):
self._changeable_envs = {"backend": ["gpu"]}
envs_list = test_base.gen_product_envs_list(
self._default_envs, self._changeable_envs
)
for envs in envs_list:
self.run_test_case(
"semi_auto_parallel_simple_net_amp.py",
user_defined_envs=envs,
)


if __name__ == "__main__":
unittest.main()