Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[Fix] adaptive max pool2d in static #58482

Merged
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
3 changes: 1 addition & 2 deletions python/paddle/nn/functional/pooling.py
Original file line number Diff line number Diff line change
Expand Up @@ -2000,8 +2000,7 @@ def adaptive_max_pool2d(x, output_size, return_mask=False, name=None):
"adaptive": True,
},
)
# return (pool_out, mask) if return_mask else pool_out
return pool_out
return (pool_out, mask) if return_mask else pool_out


def adaptive_max_pool3d(x, output_size, return_mask=False, name=None):
Expand Down
55 changes: 55 additions & 0 deletions test/legacy_test/test_adaptive_max_pool2d.py
Original file line number Diff line number Diff line change
Expand Up @@ -159,6 +159,61 @@ def test_static_graph(self):

np.testing.assert_allclose(res_5, self.res_5_np)

def test_static_graph_return_mask(self):
for use_cuda in (
[False, True] if core.is_compiled_with_cuda() else [False]
):
place = paddle.CUDAPlace(0) if use_cuda else paddle.CPUPlace()
paddle.enable_static()
x = paddle.static.data(
name="x", shape=[2, 3, 7, 7], dtype="float32"
)

out_1 = paddle.nn.functional.adaptive_max_pool2d(
x=x, output_size=[3, 3], return_mask=True
)

out_2 = paddle.nn.functional.adaptive_max_pool2d(
x=x, output_size=5, return_mask=True
)

out_3 = paddle.nn.functional.adaptive_max_pool2d(
x=x, output_size=[2, 5], return_mask=True
)

# out_4 = paddle.nn.functional.adaptive_max_pool2d(
# x=x, output_size=[3, 3], data_format="NHWC"), return_mask=True

out_5 = paddle.nn.functional.adaptive_max_pool2d(
x=x, output_size=[None, 3], return_mask=True
)

exe = paddle.static.Executor(place=place)
[
res_1,
mask_1,
res_2,
mask_2,
res_3,
mask_3,
res_5,
mask_5,
] = exe.run(
base.default_main_program(),
feed={"x": self.x_np},
fetch_list=[out_1, out_2, out_3, out_5],
)

self.assertEqual(res_1.shape, mask_1.shape)

self.assertEqual(res_2.shape, mask_2.shape)

self.assertEqual(res_3.shape, mask_3.shape)

# self.assertEqual(res_4.shape, mask_4.shape)

self.assertEqual(res_5.shape, mask_5.shape)

def test_dynamic_graph(self):
for use_cuda in (
[False, True] if core.is_compiled_with_cuda() else [False]
Expand Down