Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[cherry-pick] fix qat tests (#61211) #61284

Merged
merged 1 commit into from
Jan 30, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
70 changes: 62 additions & 8 deletions test/quantization/test_post_training_quantization_mobilenetv1.py
Original file line number Diff line number Diff line change
Expand Up @@ -25,6 +25,7 @@

import paddle
from paddle.dataset.common import download
from paddle.io import Dataset
from paddle.static.log_helper import get_logger
from paddle.static.quantization import PostTrainingQuantization

Expand Down Expand Up @@ -116,6 +117,33 @@ def val(data_dir=DATA_DIR):
return _reader_creator(file_list, 'val', shuffle=False, data_dir=data_dir)


class ImageNetDataset(Dataset):
def __init__(self, data_dir=DATA_DIR, shuffle=False, need_label=False):
super().__init__()
self.need_label = need_label
self.data_dir = data_dir
val_file_list = os.path.join(data_dir, 'val_list.txt')
with open(val_file_list) as flist:
lines = [line.strip() for line in flist]
if shuffle:
np.random.shuffle(lines)
self.data = [line.split() for line in lines]

def __getitem__(self, index):
sample = self.data[index]
data_path = os.path.join(self.data_dir, sample[0])
data, label = process_image(
[data_path, sample[1]], mode='val', color_jitter=False, rotate=False
)
if self.need_label:
return data, np.array([label]).astype('int64')
else:
return data

def __len__(self):
return len(self.data)


class TestPostTrainingQuantization(unittest.TestCase):
def setUp(self):
self.int8_download = 'int8/download'
Expand Down Expand Up @@ -267,7 +295,7 @@ def run_program(
throughput = cnt / np.sum(periods)
latency = np.average(periods)
acc1 = np.sum(test_info) / cnt
return (throughput, latency, acc1)
return (throughput, latency, acc1, feed_dict)

def generate_quantized_model(
self,
Expand All @@ -284,6 +312,7 @@ def generate_quantized_model(
batch_nums=1,
onnx_format=False,
deploy_backend=None,
feed_name="inputs",
):
try:
os.system("mkdir " + self.int8_model)
Expand All @@ -293,11 +322,30 @@ def generate_quantized_model(

place = paddle.CPUPlace()
exe = paddle.static.Executor(place)
val_reader = val()
image = paddle.static.data(
name=feed_name[0], shape=[None, 3, 224, 224], dtype='float32'
)
feed_list = [image]
if len(feed_name) == 2:
label = paddle.static.data(
name='label', shape=[None, 1], dtype='int64'
)
feed_list.append(label)

val_dataset = ImageNetDataset(need_label=len(feed_list) == 2)
data_loader = paddle.io.DataLoader(
val_dataset,
places=place,
feed_list=feed_list,
drop_last=False,
return_list=False,
batch_size=2,
shuffle=False,
)

ptq = PostTrainingQuantization(
executor=exe,
sample_generator=val_reader,
data_loader=data_loader,
model_dir=model_path,
model_filename=model_filename,
params_filename=params_filename,
Expand Down Expand Up @@ -348,7 +396,12 @@ def run_test(
model, infer_iterations * batch_size
)
)
(fp32_throughput, fp32_latency, fp32_acc1) = self.run_program(
(
fp32_throughput,
fp32_latency,
fp32_acc1,
feed_name,
) = self.run_program(
model_path,
model_filename,
params_filename,
Expand All @@ -370,14 +423,15 @@ def run_test(
batch_nums,
onnx_format,
deploy_backend,
feed_name,
)

_logger.info(
"Start INT8 inference for {} on {} images ...".format(
model, infer_iterations * batch_size
)
)
(int8_throughput, int8_latency, int8_acc1) = self.run_program(
(int8_throughput, int8_latency, int8_acc1, _) = self.run_program(
self.int8_model,
model_filename,
params_filename,
Expand Down Expand Up @@ -421,7 +475,7 @@ def test_post_training_kl_mobilenetv1(self):
is_use_cache_file = False
is_optimize_model = True
diff_threshold = 0.025
batch_nums = 1
batch_nums = 2
self.run_test(
model,
'inference.pdmodel',
Expand Down Expand Up @@ -607,7 +661,7 @@ def test_post_training_onnx_format_mobilenetv1_tensorrt(self):
is_optimize_model = False
onnx_format = True
diff_threshold = 0.05
batch_nums = 2
batch_nums = 12
deploy_backend = "tensorrt"
self.run_test(
model,
Expand Down Expand Up @@ -650,7 +704,7 @@ def test_post_training_onnx_format_mobilenetv1_mkldnn(self):
is_optimize_model = False
onnx_format = True
diff_threshold = 0.05
batch_nums = 1
batch_nums = 12
deploy_backend = "mkldnn"
self.run_test(
model,
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -113,7 +113,7 @@ def run_program(
throughput = cnt / np.sum(periods)
latency = np.average(periods)
acc1 = np.sum(test_info) / cnt
return (throughput, latency, acc1)
return (throughput, latency, acc1, feed_dict)


class TestPostTrainingForResnet50ONNXFormat(TestPostTrainingForResnet50):
Expand Down