-
Notifications
You must be signed in to change notification settings - Fork 5.7k
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
add spp(Spatial pyramid pooling ) op #6204
Changes from 6 commits
5c057f9
c75b453
531e7b6
8368e55
0c44468
141a323
89de58d
ea09328
1eac276
5be5afb
File filter
Filter by extension
Conversations
Jump to
Diff view
Diff view
There are no files selected for viewing
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,86 @@ | ||
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. | ||
|
||
Licensed under the Apache License, Version 2.0 (the "License"); | ||
you may not use this file except in compliance with the License. | ||
Indicesou may obtain a copy of the License at | ||
|
||
http://www.apache.org/licenses/LICENSE-2.0 | ||
|
||
Unless required by applicable law or agreed to in writing, software | ||
distributed under the License is distributed on an "AS IS" BASIS, | ||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
See the License for the specific language governing permissions and | ||
limitations under the License. */ | ||
|
||
#include "paddle/operators/spp_op.h" | ||
namespace paddle { | ||
namespace operators { | ||
|
||
class SppOpMaker : public framework::OpProtoAndCheckerMaker { | ||
public: | ||
SppOpMaker(framework::OpProto* proto, framework::OpAttrChecker* op_checker) | ||
: OpProtoAndCheckerMaker(proto, op_checker) { | ||
AddInput( | ||
"X", | ||
"(Tensor) The input tensor of spp operator. " | ||
"The format of input tensor is NCHW. Where N is batch size, C is the " | ||
"number of channels, H and W is the height and width of feature."); | ||
AddOutput("Out", | ||
"(Tensor) The output tensor of spp operator." | ||
"N * M." | ||
"M = C * H * W"); | ||
AddAttr<int>("pyramid_height", "(int), multi level pooling"); | ||
AddComment(R"DOC( | ||
"Does spatial pyramid pooling on the input image by taking the max, | ||
etc. within regions so that the result vector of different sized | ||
images are of the same size | ||
Input shape: $(N, C_{in}, H_{in}, W_{in})$ | ||
Output shape: $(H_{out}, W_{out})$ | ||
Where | ||
$$ | ||
H_{out} = N \\ | ||
W_{out} = (((4^pyramid_height) - 1) / (4 - 1))$ * C_{in} | ||
$$ | ||
)DOC"); | ||
} | ||
}; | ||
|
||
class SppOp : public framework::OperatorWithKernel { | ||
public: | ||
using framework::OperatorWithKernel::OperatorWithKernel; | ||
void InferShape(framework::InferShapeContext* ctx) const override { | ||
PADDLE_ENFORCE(ctx->HasInput("X"), | ||
"Input(X) of SppOp" | ||
"should not be null."); | ||
PADDLE_ENFORCE(ctx->HasOutput("Out"), | ||
"Output(Out) of SppOp should not be null."); | ||
auto in_x_dims = ctx->GetInputDim("X"); | ||
int pyramid_height = ctx->Attrs().Get<int>("pyramid_height"); | ||
PADDLE_ENFORCE(in_x_dims.size() == 4, | ||
"Spping intput must be of 4-dimensional."); | ||
int outlen = ((std::pow(4, pyramid_height) - 1) / (4 - 1)) * in_x_dims[1]; | ||
std::vector<int64_t> output_shape({in_x_dims[0], outlen}); | ||
ctx->SetOutputDim("Out", framework::make_ddim(output_shape)); | ||
} | ||
}; | ||
|
||
class SppOpGrad : public framework::OperatorWithKernel { | ||
public: | ||
using framework::OperatorWithKernel::OperatorWithKernel; | ||
void InferShape(framework::InferShapeContext* ctx) const override { | ||
PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) must not be null."); | ||
PADDLE_ENFORCE(ctx->HasOutput(framework::GradVarName("X")), | ||
"Input(X@GRAD) should not be null."); | ||
ctx->SetOutputDim(framework::GradVarName("X"), ctx->GetInputDim("X")); | ||
} | ||
}; | ||
} // namespace operators | ||
} // namespace paddle | ||
|
||
namespace ops = paddle::operators; | ||
REGISTER_OP(spp, ops::SppOp, ops::SppOpMaker, spp_grad, ops::SppOpGrad); | ||
REGISTER_OP_CPU_KERNEL(spp, ops::SppKernel<paddle::platform::CPUPlace, float>, | ||
ops::SppKernel<paddle::platform::CPUPlace, double>); | ||
REGISTER_OP_CPU_KERNEL(spp_grad, | ||
ops::SppGradKernel<paddle::platform::CPUPlace, float>, | ||
ops::SppGradKernel<paddle::platform::CPUPlace, double>); |
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,22 @@ | ||
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. | ||
|
||
Licensed under the Apache License, Version 2.0 (the "License"); | ||
you may not use this file except in compliance with the License. | ||
Indicesou may obtain a copy of the License at | ||
|
||
http://www.apache.org/licenses/LICENSE-2.0 | ||
|
||
Unless required by applicable law or agreed to in writing, software | ||
distributed under the License is distributed on an "AS IS" BASIS, | ||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
See the License for the specific language governing permissions and | ||
limitations under the License. */ | ||
|
||
#include "paddle/operators/spp_op.h" | ||
|
||
namespace ops = paddle::operators; | ||
REGISTER_OP_GPU_KERNEL(spp, ops::SppKernel<paddle::platform::GPUPlace, float>, | ||
ops::SppKernel<paddle::platform::GPUPlace, double>); | ||
REGISTER_OP_GPU_KERNEL(spp_grad, | ||
ops::SppGradKernel<paddle::platform::GPUPlace, float>, | ||
ops::SppGradKernel<paddle::platform::GPUPlace, double>); |
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,150 @@ | ||
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. | ||
|
||
Licensed under the Apache License, Version 2.0 (the "License"); | ||
you may not use this file except in compliance with the License. | ||
Indicesou may obtain a copy of the License at | ||
|
||
http://www.apache.org/licenses/LICENSE-2.0 | ||
|
||
Unless required by applicable law or agreed to in writing, software | ||
distributed under the License is distributed on an "AS IS" BASIS, | ||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
See the License for the specific language governing permissions and | ||
limitations under the License. */ | ||
|
||
#pragma once | ||
#include "paddle/framework/op_registry.h" | ||
#include "paddle/operators/math/math_function.h" | ||
#include "paddle/operators/math/pooling.h" | ||
#include "paddle/operators/strided_memcpy.h" | ||
|
||
namespace paddle { | ||
namespace operators { | ||
template <typename Place, typename T> | ||
class SppKernel : public framework::OpKernel<T> { | ||
public: | ||
void Compute(const framework::ExecutionContext& context) const override { | ||
const framework::Tensor* in_x = context.Input<framework::Tensor>("X"); | ||
auto* out = context.Output<framework::Tensor>("Out"); | ||
int pyramid_height = context.template Attr<int>("pyramid_height"); | ||
out->mutable_data<T>(context.GetPlace()); | ||
auto out_stride = framework::stride(out->dims()); | ||
int input_h = in_x->dims()[2]; | ||
int input_w = in_x->dims()[3]; | ||
size_t output_offset = 0; | ||
for (int p = 0; p < pyramid_height; ++p) { | ||
int bins = std::pow(2, p); | ||
int kernel_size_h = std::ceil(input_h / static_cast<double>(bins)); | ||
int kernel_size_w = std::ceil(input_w / static_cast<double>(bins)); | ||
int padding_h = (kernel_size_h * bins - input_h + 1) / 2; | ||
int padding_w = (kernel_size_w * bins - input_w + 1) / 2; | ||
std::vector<int> kernel_size({kernel_size_h, kernel_size_w}); | ||
std::vector<int> strides({kernel_size_h, kernel_size_w}); | ||
std::vector<int> paddings({padding_h, padding_w}); | ||
// pooling output shape | ||
framework::Tensor out_level; | ||
std::vector<int64_t> output_shape_vec({in_x->dims()[0], in_x->dims()[1]}); | ||
output_shape_vec.push_back( | ||
(input_h - kernel_size_h + 2 * padding_h) / kernel_size_h + 1); | ||
output_shape_vec.push_back( | ||
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. Is There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. done |
||
(input_w - kernel_size_w + 2 * padding_w) / kernel_size_w + 1); | ||
framework::DDim output_shape(framework::make_ddim(output_shape_vec)); | ||
out_level.mutable_data<T>(output_shape, context.GetPlace()); | ||
// pooling | ||
math::Pool2dFunctor<Place, math::MaxPool<T>, T> pool_forward; | ||
math::MaxPool<T> max_process; | ||
pool_forward(context.device_context(), *in_x, kernel_size, strides, | ||
paddings, max_process, &out_level); | ||
// flatten pooling output shape | ||
framework::Tensor out_flatten_level; | ||
int output_flatten_w = in_x->dims()[1] * bins * bins; | ||
std::vector<int64_t> output_flatten_shape_vec( | ||
{in_x->dims()[0], output_flatten_w}); | ||
framework::DDim output_flatten_shape( | ||
framework::make_ddim(output_flatten_shape_vec)); | ||
out_flatten_level.ShareDataWith(out_level); | ||
out_flatten_level.Resize(output_flatten_shape); | ||
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. why not use There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. done |
||
// concat | ||
auto out_flatten_level_stride = | ||
framework::stride(out_flatten_level.dims()); | ||
StridedMemcpy<T>(context.device_context(), out_flatten_level.data<T>(), | ||
out_flatten_level_stride, out_flatten_level.dims(), | ||
out_stride, out->data<T>() + output_offset); | ||
output_offset += | ||
out_flatten_level.dims()[1] * out_flatten_level_stride[1]; | ||
} | ||
} | ||
}; | ||
template <typename Place, typename T> | ||
class SppGradKernel : public framework::OpKernel<T> { | ||
public: | ||
void Compute(const framework::ExecutionContext& context) const override { | ||
const framework::Tensor* in_x = context.Input<framework::Tensor>("X"); | ||
const framework::Tensor* out = context.Input<framework::Tensor>("Out"); | ||
const framework::Tensor* out_grad = | ||
context.Input<framework::Tensor>(framework::GradVarName("Out")); | ||
framework::Tensor* in_x_grad = | ||
context.Output<framework::Tensor>(framework::GradVarName("X")); | ||
int pyramid_height = context.template Attr<int>("pyramid_height"); | ||
auto& device_ctx = context.device_context(); | ||
math::SetConstant<Place, T> zero; | ||
in_x_grad->mutable_data<T>(context.GetPlace()); | ||
zero(device_ctx, in_x_grad, static_cast<T>(0)); | ||
auto out_stride = framework::stride(out->dims()); | ||
int input_h = in_x->dims()[2]; | ||
int input_w = in_x->dims()[3]; | ||
size_t out_offset = 0; | ||
for (int p = 0; p < pyramid_height; ++p) { | ||
int bins = std::pow(2, p); | ||
int kernel_size_h = std::ceil(input_h / static_cast<double>(bins)); | ||
int kernel_size_w = std::ceil(input_w / static_cast<double>(bins)); | ||
int padding_h = (kernel_size_h * bins - input_h + 1) / 2; | ||
int padding_w = (kernel_size_w * bins - input_w + 1) / 2; | ||
std::vector<int> kernel_size({kernel_size_h, kernel_size_w}); | ||
std::vector<int> strides({kernel_size_h, kernel_size_w}); | ||
std::vector<int> paddings({padding_h, padding_w}); | ||
// split out and outgrad ... to flatten | ||
framework::Tensor out_flatten_level; | ||
framework::Tensor outgrad_flatten_level; | ||
int out_flatten_w = in_x->dims()[1] * bins * bins; | ||
std::vector<int64_t> out_flatten_shape_vec( | ||
{in_x->dims()[0], out_flatten_w}); | ||
framework::DDim out_flatten_shape( | ||
framework::make_ddim(out_flatten_shape_vec)); | ||
out_flatten_level.mutable_data<T>(out_flatten_shape, context.GetPlace()); | ||
outgrad_flatten_level.mutable_data<T>(out_flatten_shape, | ||
context.GetPlace()); | ||
auto flatten_stride = framework::stride(out_flatten_level.dims()); | ||
// memcpy | ||
StridedMemcpy<T>(context.device_context(), out->data<T>() + out_offset, | ||
out_stride, out_flatten_level.dims(), flatten_stride, | ||
out_flatten_level.data<T>()); | ||
|
||
StridedMemcpy<T>(context.device_context(), | ||
out_grad->data<T>() + out_offset, out_stride, | ||
outgrad_flatten_level.dims(), flatten_stride, | ||
outgrad_flatten_level.data<T>()); | ||
out_offset += out_flatten_level.dims()[1] * out_stride[1]; | ||
// flatten backward to nchw | ||
framework::Tensor out_level; | ||
framework::Tensor outgrad_level; | ||
std::vector<int64_t> out_shape_vec({in_x->dims()[0], in_x->dims()[1]}); | ||
out_shape_vec.push_back( | ||
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. ditto There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. done |
||
(input_h - kernel_size_h + 2 * padding_h) / kernel_size_h + 1); | ||
out_shape_vec.push_back( | ||
(input_w - kernel_size_w + 2 * padding_w) / kernel_size_w + 1); | ||
framework::DDim out_shape(framework::make_ddim(out_shape_vec)); | ||
out_level.ShareDataWith(out_flatten_level); | ||
out_level.Resize(out_shape); | ||
outgrad_level.ShareDataWith(outgrad_flatten_level); | ||
outgrad_level.Resize(out_shape); | ||
// pooling backward | ||
math::MaxPool2dGradFunctor<Place, T> pool2d_backward; | ||
pool2d_backward(context.device_context(), *in_x, *&out_level, | ||
*&outgrad_level, kernel_size, strides, paddings, | ||
in_x_grad); | ||
} | ||
} | ||
}; | ||
} // namespace operators | ||
} // namespace paddle |
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,53 @@ | ||
import unittest | ||
import numpy as np | ||
from op_test import OpTest | ||
from test_pool2d_op import max_pool2D_forward_naive | ||
|
||
|
||
class TestSppOp(OpTest): | ||
def setUp(self): | ||
self.op_type = "spp" | ||
self.init_test_case() | ||
input = np.random.random(self.shape).astype("float32") | ||
nsize, csize, hsize, wsize = input.shape | ||
out_level_flatten = [] | ||
for i in xrange(self.pyramid_height): | ||
bins = np.power(2, i) | ||
kernel_size = [0, 0] | ||
padding = [0, 0] | ||
kernel_size[0] = np.ceil(hsize / | ||
bins.astype("double")).astype("int32") | ||
padding[0] = ( | ||
(kernel_size[0] * bins - hsize + 1) / 2).astype("int32") | ||
|
||
kernel_size[1] = np.ceil(wsize / | ||
bins.astype("double")).astype("int32") | ||
padding[1] = ( | ||
(kernel_size[1] * bins - wsize + 1) / 2).astype("int32") | ||
out_level = max_pool2D_forward_naive(input, kernel_size, | ||
kernel_size, padding) | ||
out_level_flatten.append( | ||
out_level.reshape(nsize, bins * bins * csize)) | ||
if i == 0: | ||
output = out_level_flatten[i] | ||
else: | ||
output = np.concatenate((output, out_level_flatten[i]), 1) | ||
# output = np.concatenate(out_level_flatten.tolist(), 0); | ||
self.inputs = {'X': input.astype('float32'), } | ||
self.attrs = {'pyramid_height': self.pyramid_height} | ||
|
||
self.outputs = {'Out': output.astype('float32')} | ||
|
||
def test_check_output(self): | ||
self.check_output() | ||
|
||
def test_check_grad(self): | ||
self.check_grad(['X'], 'Out', max_relative_error=0.05) | ||
|
||
def init_test_case(self): | ||
self.shape = [3, 2, 4, 4] | ||
self.pyramid_height = 3 | ||
|
||
|
||
if __name__ == '__main__': | ||
unittest.main() |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
The document is too simple to be easy to understand for the novice.
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
done