Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

llama group: add llama group #62325

Merged
merged 6 commits into from
Mar 5, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion test/ir/pir/cinn/symbolic/CMakeLists.txt
Original file line number Diff line number Diff line change
Expand Up @@ -32,7 +32,7 @@ if(WITH_GPU)
${CMAKE_COMMAND} -E env
PYTHONPATH=${CMAKE_BINARY_DIR}:${CMAKE_BINARY_DIR}/python/:$ENV{PYTHONPATH}
FLAGS_enable_pir_api=1 FLAGS_cinn_bucket_compile=True
FLAGS_pir_apply_shape_optimization_pass=1
FLAGS_prim_enable_dynamic=true FLAGS_pir_apply_shape_optimization_pass=1
FLAGS_group_schedule_tiling_first=1 FLAGS_cinn_new_group_scheduler=1
${PYTHON_EXECUTABLE}
${CMAKE_CURRENT_SOURCE_DIR}/${cinn_pir_test_name}.py
Expand Down
120 changes: 120 additions & 0 deletions test/ir/pir/cinn/symbolic/test_llama_group_log_softmax.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,120 @@
# Copyright (c) 2024 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import sys
import unittest
from os.path import dirname

import numpy as np

import paddle
import paddle.nn.functional as F
from paddle import nn
from paddle.base import core
from paddle.static import InputSpec

sys.path.append(dirname(dirname(__file__)))
sys.path.append("../")
import utils


def update_scores_for_generation(
scores, next_scores, length, unfinished_flag=None
):
# update scores

unfinished_scores = (scores * length + next_scores) / (length + 1)
return unfinished_scores


def tmp(logits, scores, next_tokens, length):
origin_probs = F.log_softmax(logits) # [-1,32000], f16

# compute next_tokens
# logits = logits / temperature
# top_ps_tensor = paddle.full(shape=[paddle.shape(probs)[0], 1], fill_value=top_p, dtype=probs.dtype)
# _, next_tokens = paddle.tensor.top_p_sampling(probs, top_ps_tensor)

next_scores = paddle.index_sample(
origin_probs, next_tokens
) # (pd_op.tensor<-1x32000xf16>, pd_op.tensor<-1x1xi64>) -> pd_op.tensor<-1x1xf16>
scores = update_scores_for_generation(scores, next_scores, length)
return scores


class TestGroupOpNet(nn.Layer):
def __init__(self):
super().__init__()

def forward(self, x, scores, next_tokens, length):
# "O" represents COPY semantics.
out = tmp(x, scores, next_tokens, length)
return out


class TestGroupOp(unittest.TestCase):
def setUp(self):
paddle.seed(2024)
self.prepare_data()

def prepare_data(self):
self.shape1 = [1, 32000]
self.x = paddle.randn(self.shape1, dtype="float16")
self.x.stop_gradient = False
self.score_s = [1, 1]
self.score = paddle.randn(self.score_s, dtype="float16")
self.score.stop_gradient = False

self.shape2 = [1, 1]
self.y = paddle.full(self.shape2, 1, dtype="int64")
self.y.stop_gradient = False
self.shape3 = [1]
self.z = paddle.full(self.shape3, 1, dtype="int64")
self.z.stop_gradient = False

def check_jit_kernel_info(self, static_fn):
utils.check_jit_kernel_number(static_fn, 1)
utils.check_jit_kernel_structure(static_fn, {utils.JIT_KERNEL_NAME: 1})

def eval(self, use_cinn=False, mode="jit"):
net = TestGroupOpNet()
if mode == "eager":
out = net(self.x, self.score, self.y, self.z)
else:
input_spec = [
InputSpec(shape=[None, 32000], dtype="float16"),
InputSpec(shape=[None, 1], dtype="float16"),
InputSpec(shape=[None, 1], dtype="int64"),
InputSpec(shape=[1], dtype="int64"),
]
net = utils.apply_to_static(net, use_cinn, input_spec)
net.eval()
out = net(self.x, self.score, self.y, self.z)
if use_cinn:
self.check_jit_kernel_info(net.forward)
return out

def test_eval(self):
dy_out = self.eval(mode="eager")
core._set_prim_all_enabled(True)
# cinn_out = self.eval(use_cinn=utils.unittest_use_cinn())
cinn_out = self.eval(use_cinn=False)
np.testing.assert_allclose(
cinn_out.numpy(), dy_out.numpy(), atol=1e-6, rtol=1e-6
)
core._set_prim_all_enabled(True)


if __name__ == '__main__':
unittest.main()
84 changes: 84 additions & 0 deletions test/ir/pir/cinn/symbolic/test_llama_group_swiglu.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,84 @@
# Copyright (c) 2024 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import sys
import unittest
from os.path import dirname

import numpy as np

import paddle
from paddle import nn
from paddle.base import core
from paddle.static import InputSpec

sys.path.append(dirname(dirname(__file__)))
sys.path.append("../")


import utils


class TransposeReshapeNet(nn.Layer):
def __init__(self):
super().__init__()

def forward(self, x, y):
out = paddle.incubate.nn.functional.swiglu(x, y)

return out


class TestTransposeReshape(unittest.TestCase):
def setUp(self):
paddle.seed(2024)
self.prepare_data()

def prepare_data(self):
self.x = paddle.randn([4, 32, 11008], dtype="float16")
self.y = paddle.randn([4, 32, 11008], dtype="float16")

def check_jit_kernel_info(self, static_fn):
utils.check_jit_kernel_number(static_fn, 1)
utils.check_jit_kernel_structure(static_fn, {utils.JIT_KERNEL_NAME: 1})

def eval(self, use_cinn=False, mode="jit"):
net = TransposeReshapeNet()
if mode == "eager":
out = out = net(self.x, self.y)
else:
input_spec = [
InputSpec(shape=[None, None, 11008], dtype="float16"),
InputSpec(shape=[None, None, 11008], dtype="float16"),
]
net = utils.apply_to_static(net, use_cinn, input_spec)
net.eval()
out = net(self.x, self.y)
if use_cinn:
self.check_jit_kernel_info(net.forward)
return out

def test_eval(self):
dy_out = self.eval(mode="eager")
core._set_prim_all_enabled(True)
# cinn_out = self.eval(use_cinn=utils.unittest_use_cinn())
cinn_out = self.eval(use_cinn=False)
np.testing.assert_allclose(
cinn_out.numpy(), dy_out.numpy(), atol=1e-2, rtol=1e-2
)
core._set_prim_all_enabled(False)


if __name__ == '__main__':
unittest.main()