Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[Typing][A-75] Add type annotations for python/paddle/vision/models/googlenet.py #65290

Merged
merged 5 commits into from
Jun 19, 2024
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
56 changes: 40 additions & 16 deletions python/paddle/vision/models/googlenet.py
Original file line number Diff line number Diff line change
Expand Up @@ -12,9 +12,19 @@
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import annotations

from typing import (
TYPE_CHECKING,
TypedDict,
)

from typing_extensions import NotRequired, Unpack

import paddle
import paddle.nn.functional as F
from paddle import nn
from paddle._typing import Size2
from paddle.base.param_attr import ParamAttr
from paddle.nn import (
AdaptiveAvgPool2D,
Expand All @@ -27,6 +37,8 @@
from paddle.nn.initializer import Uniform
from paddle.utils.download import get_weights_path_from_url

if TYPE_CHECKING:
from paddle import Tensor
__all__ = []

model_urls = {
Expand All @@ -37,15 +49,20 @@
}


def xavier(channels, filter_size):
def xavier(channels: int, filter_size: int) -> ParamAttr:
stdv = (3.0 / (filter_size**2 * channels)) ** 0.5
param_attr = ParamAttr(initializer=Uniform(-stdv, stdv))
return param_attr


class ConvLayer(nn.Layer):
def __init__(
self, num_channels, num_filters, filter_size, stride=1, groups=1
self,
num_channels: int,
num_filters: int,
filter_size: int,
stride: Size2 = 1,
groups: int = 1,
):
super().__init__()

Expand All @@ -59,22 +76,22 @@ def __init__(
bias_attr=False,
)

def forward(self, inputs):
def forward(self, inputs: Tensor) -> Tensor:
y = self._conv(inputs)
return y


class Inception(nn.Layer):
def __init__(
self,
input_channels,
output_channels,
filter1,
filter3R,
filter3,
filter5R,
filter5,
proj,
input_channels: int,
output_channels: int,
filter1: int,
filter3R: int,
filter3: int,
filter5R: int,
filter5: int,
proj: int,
):
super().__init__()

Expand All @@ -87,7 +104,7 @@ def __init__(

self._convprj = ConvLayer(input_channels, proj, 1)

def forward(self, inputs):
def forward(self, inputs: Tensor) -> Tensor:
conv1 = self._conv1(inputs)

conv3r = self._conv3r(inputs)
Expand Down Expand Up @@ -132,7 +149,7 @@ class GoogLeNet(nn.Layer):
[1, 1000] [1, 1000] [1, 1000]
"""

def __init__(self, num_classes=1000, with_pool=True):
def __init__(self, num_classes: int = 1000, with_pool: bool = True) -> None:
super().__init__()
self.num_classes = num_classes
self.with_pool = with_pool
Expand Down Expand Up @@ -181,7 +198,7 @@ def __init__(self, num_classes=1000, with_pool=True):
self._drop_o2 = Dropout(p=0.7, mode="downscale_in_infer")
self._out2 = Linear(1024, num_classes, weight_attr=xavier(1024, 1))

def forward(self, inputs):
def forward(self, inputs: Tensor) -> tuple[Tensor, Tensor, Tensor]:
x = self._conv(inputs)
x = self._pool(x)
x = self._conv_1(x)
Expand Down Expand Up @@ -227,10 +244,17 @@ def forward(self, inputs):
out2 = self._drop_o2(out2)
out2 = self._out2(out2)

return [out, out1, out2]
return out, out1, out2


class _GoogLeNetOptions(TypedDict):
num_classes: NotRequired[int]
with_pool: NotRequired[bool]


def googlenet(pretrained=False, **kwargs):
def googlenet(
pretrained: bool = False, **kwargs: Unpack[_GoogLeNetOptions]
) -> GoogLeNet:
"""GoogLeNet (Inception v1) model architecture from
`"Going Deeper with Convolutions" <https://arxiv.org/pdf/1409.4842.pdf>`_.
Expand Down