Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[Typing][B-89] Add type annotations for python/paddle/nn/utils/weight_norm_hook.py #65812

Merged
merged 1 commit into from
Jul 9, 2024
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
36 changes: 26 additions & 10 deletions python/paddle/nn/utils/weight_norm_hook.py
Original file line number Diff line number Diff line change
Expand Up @@ -11,17 +11,30 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import annotations

from typing import TYPE_CHECKING

import paddle
from paddle import _C_ops

from ...base.data_feeder import check_variable_and_dtype
from ...base.layer_helper import LayerHelper
from ...framework import in_dynamic_mode

if TYPE_CHECKING:
from typing_extensions import Never

from paddle import Tensor
from paddle.nn import Layer

__all__ = []


def l2_norm(x, axis, epsilon=1e-12, name=None):
def l2_norm(
x: Tensor, axis: int, epsilon: float = 1e-12, name: str | None = None
) -> Tensor:
if len(x.shape) == 1:
axis = 0

Expand All @@ -46,7 +59,7 @@ def l2_norm(x, axis, epsilon=1e-12, name=None):
return paddle.squeeze(norm, axis=[axis])


def norm_except_dim(p, dim):
def norm_except_dim(p: Tensor, dim: int) -> Tensor:
shape = p.shape
ndims = len(shape)
if dim == -1:
Expand All @@ -65,7 +78,7 @@ def norm_except_dim(p, dim):
return norm_except_dim(p_transposed, 0)


def _weight_norm(v, g, dim):
def _weight_norm(v: Tensor, g: Tensor, dim: int) -> Tensor:
shape = v.shape
ndims = len(shape)

Expand Down Expand Up @@ -96,19 +109,22 @@ def _weight_norm(v, g, dim):


class WeightNorm:
def __init__(self, name, dim):
name: str
dim: int

def __init__(self, name: str, dim: int) -> None:
if dim is None:
dim = -1
self.name = name
self.dim = dim

def compute_weight(self, layer):
def compute_weight(self, layer: Layer) -> Tensor:
g = getattr(layer, self.name + '_g')
v = getattr(layer, self.name + '_v')
return _weight_norm(v, g, self.dim)

@staticmethod
def apply(layer, name, dim):
def apply(layer: Layer, name: str, dim: int) -> WeightNorm:
for k, hook in layer._forward_pre_hooks.items():
if isinstance(hook, WeightNorm) and hook.name == name:
raise RuntimeError(
Expand Down Expand Up @@ -145,7 +161,7 @@ def apply(layer, name, dim):
layer.register_forward_pre_hook(fn)
return fn

def remove(self, layer):
def remove(self, layer: Layer) -> None:
w_var = self.compute_weight(layer)
delattr(layer, self.name)
del layer._parameters[self.name + '_g']
Expand All @@ -155,11 +171,11 @@ def remove(self, layer):
with paddle.no_grad():
paddle.assign(w_var, w)

def __call__(self, layer, inputs):
def __call__(self, layer: Layer, inputs: Never) -> None:
setattr(layer, self.name, self.compute_weight(layer))


def weight_norm(layer, name='weight', dim=0):
def weight_norm(layer: Layer, name: str = 'weight', dim: int = 0) -> Layer:
r"""
Applies weight normalization to a parameter according to the
following formula:
Expand Down Expand Up @@ -205,7 +221,7 @@ def weight_norm(layer, name='weight', dim=0):
return layer


def remove_weight_norm(layer, name='weight'):
def remove_weight_norm(layer: Layer, name: str = 'weight') -> Layer:
"""
remove weight normalization from layer.

Expand Down