Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

【Fix PIR Unittest No.35 BUAA】Fit some test case in PIR #66242

Closed
wants to merge 1 commit into from
Closed
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Original file line number Diff line number Diff line change
@@ -0,0 +1,206 @@
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import unittest

import numpy as np
from op_test import OpTest

import paddle
from paddle import base
from paddle.base import core
from paddle.nn import functional
from paddle.pir_utils import test_with_pir_api


class TestOneHotOp(OpTest):
def setUp(self):
self.op_type = 'one_hot_v2'
depth = 10
depth_np = np.array(10).astype('int32')
dimension = 12
x_lod = [[4, 1, 3, 3]]
x = [np.random.randint(0, depth - 1) for i in range(sum(x_lod[0]))]
x = np.array(x).astype('int32').reshape([sum(x_lod[0])])

out = np.zeros(shape=(np.prod(x.shape), depth)).astype('float32')

for i in range(np.prod(x.shape)):
out[i, x[i]] = 1.0

self.inputs = {'X': (x, x_lod), 'depth_tensor': depth_np}
self.attrs = {'dtype': int(core.VarDesc.VarType.FP32)}
self.outputs = {'Out': (out, x_lod)}

def test_check_output(self):
self.check_output(check_dygraph=False)


class TestOneHotOp_attr(OpTest):
def setUp(self):
self.op_type = 'one_hot_v2'
depth = 10
dimension = 12
x_lod = [[4, 1, 3, 3]]
x = [np.random.randint(0, depth - 1) for i in range(sum(x_lod[0]))]
x = np.array(x).astype('int32').reshape([sum(x_lod[0]), 1])

out = np.zeros(shape=(np.prod(x.shape[:-1]), 1, depth)).astype(
'float32'
)

for i in range(np.prod(x.shape)):
out[i, 0, x[i]] = 1.0

self.inputs = {'X': (x, x_lod)}
self.attrs = {'dtype': int(core.VarDesc.VarType.FP32), 'depth': depth}
self.outputs = {'Out': (out, x_lod)}

def test_check_output(self):
self.check_output(check_dygraph=False)


class TestOneHotOp_default_dtype(OpTest):
def setUp(self):
self.op_type = 'one_hot_v2'
depth = 10
depth_np = np.array(10).astype('int32')
dimension = 12
x_lod = [[4, 1, 3, 3]]
x = [np.random.randint(0, depth - 1) for i in range(sum(x_lod[0]))]
x = np.array(x).astype('int32').reshape([sum(x_lod[0])])

out = np.zeros(shape=(np.prod(x.shape), depth)).astype('float32')

for i in range(np.prod(x.shape)):
out[i, x[i]] = 1.0

self.inputs = {'X': (x, x_lod), 'depth_tensor': depth_np}
self.attrs = {}
self.outputs = {'Out': (out, x_lod)}

def test_check_output(self):
self.check_output(check_dygraph=False)


class TestOneHotOp_default_dtype_attr(OpTest):
def setUp(self):
self.op_type = 'one_hot_v2'
depth = 10
dimension = 12
x_lod = [[4, 1, 3, 3]]
x = [np.random.randint(0, depth - 1) for i in range(sum(x_lod[0]))]
x = np.array(x).astype('int32').reshape([sum(x_lod[0]), 1])

out = np.zeros(shape=(np.prod(x.shape[:-1]), 1, depth)).astype(
'float32'
)

for i in range(np.prod(x.shape)):
out[i, 0, x[i]] = 1.0

self.inputs = {'X': (x, x_lod)}
self.attrs = {'depth': depth}
self.outputs = {'Out': (out, x_lod)}

def test_check_output(self):
self.check_output(check_dygraph=False)


class TestOneHotOpApi(unittest.TestCase):
@test_with_pir_api
def test_api(self):
main = paddle.static.Program()
startup = paddle.static.Program()
with paddle.static.program_guard(main, startup):
num_classes = 10
label = paddle.static.data(
name="label", shape=[-1, 1], dtype="int64"
)
one_hot_label = functional.one_hot(x=label, num_classes=num_classes)

place = base.CPUPlace()
label_data = np.array(
[np.random.randint(0, 10 - 1) for i in range(6)]
).reshape([6, 1])
label_data = label_data.astype('int64')

exe = base.Executor(place)
exe.run(startup)
ret = exe.run(
feed={
'label': label_data,
},
fetch_list=[one_hot_label],
return_numpy=False,
)

@test_with_pir_api
def test_api_with_depthTensor(self):
main = paddle.static.Program()
startup = paddle.static.Program()
with paddle.static.program_guard(main, startup):
num_classes = paddle.assign(np.array([10], dtype=np.int32))
label = paddle.static.data(
name="label", shape=[-1, 1], dtype="int64"
)
one_hot_label = functional.one_hot(x=label, num_classes=num_classes)

place = base.CPUPlace()
label_data = np.array(
[np.random.randint(0, 10 - 1) for i in range(6)]
).reshape([6, 1])
label_data = label_data.astype('int64')

exe = base.Executor(place)
exe.run(startup)
ret = exe.run(
feed={
'label': label_data,
},
fetch_list=[one_hot_label],
return_numpy=False,
)

def test_api_with_dygraph(self):
num_classes = 10
label = np.array(
[np.random.randint(0, num_classes - 1) for i in range(6)]
).reshape([6, 1])
with base.dygraph.guard():
one_hot_label = functional.one_hot(
x=paddle.to_tensor(label), num_classes=num_classes
)


class BadInputTestOnehotV2(unittest.TestCase):
def test_error(self):
if not paddle.framework.use_pir_api():
with base.program_guard(base.Program()):

def test_bad_x():
label = paddle.static.data(
name="label",
shape=[4],
dtype="float32",
)
label.desc.set_need_check_feed(False)
one_hot_label = functional.one_hot(x=label, num_classes=4)

self.assertRaises(TypeError, test_bad_x)


if __name__ == '__main__':
paddle.enable_static()
unittest.main()
25 changes: 13 additions & 12 deletions test/deprecated/legacy_test/test_nn_functional_hot_op.py
Original file line number Diff line number Diff line change
Expand Up @@ -186,18 +186,19 @@ def test_api_with_dygraph(self):

class BadInputTestOnehotV2(unittest.TestCase):
def test_error(self):
with base.program_guard(base.Program()):

def test_bad_x():
label = paddle.static.data(
name="label",
shape=[4],
dtype="float32",
)
label.desc.set_need_check_feed(False)
one_hot_label = functional.one_hot(x=label, num_classes=4)

self.assertRaises(TypeError, test_bad_x)
if not paddle.framework.use_pir_api():
with base.program_guard(base.Program()):

def test_bad_x():
label = paddle.static.data(
name="label",
shape=[4],
dtype="float32",
)
label.desc.set_need_check_feed(False)
one_hot_label = functional.one_hot(x=label, num_classes=4)

self.assertRaises(TypeError, test_bad_x)


if __name__ == '__main__':
Expand Down