Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[PIR Unittest] fix pir ut (test_while_op,test_norm_nn_grad) #66785

Merged
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 0 additions & 1 deletion paddle/fluid/pir/dialect/op_generator/ops_api_gen.py
Original file line number Diff line number Diff line change
Expand Up @@ -213,7 +213,6 @@
'seed',
'shadow_feed',
'shadow_feed_tensors',
'shuffle_batch',
'sparse_momentum',
'tdm_sampler',
'soft_relu',
Expand Down
2 changes: 2 additions & 0 deletions paddle/phi/infermeta/binary.cc
Original file line number Diff line number Diff line change
Expand Up @@ -3757,8 +3757,10 @@ void ShuffleBatchInferMeta(const MetaTensor& x,
) {
out->share_dims(x);
out->share_lod(x);
out->set_dtype(x.dtype());
seed_out->share_dims(seed);
seed_out->share_lod(seed);
seed_out->set_dtype(seed.dtype());
shuffle_idx->set_dims(phi::make_ddim({-1}));
}

Expand Down
18 changes: 13 additions & 5 deletions python/paddle/incubate/layers/nn.py
Original file line number Diff line number Diff line change
Expand Up @@ -530,11 +530,19 @@ def shuffle_batch(x: Tensor, seed: int | Tensor | None = None) -> Tensor:
op_attrs = {}
if isinstance(seed, int):
op_attrs["startup_seed"] = seed
seed = helper.create_variable(
name=unique_name.generate("shuffle_batch_seed"),
dtype="int64",
persistable=False,
)
if paddle.framework.in_pir_mode():
seed = paddle.full([0], 0, "int64")
out, _, _ = _C_ops.shuffle_batch(x, seed, op_attrs["startup_seed"])
return out
else:
seed = helper.create_variable(
name=unique_name.generate("shuffle_batch_seed"),
dtype="int64",
persistable=False,
)
if paddle.framework.in_pir_mode():
out, _, _ = _C_ops.shuffle_batch(x, seed, 0)
return out
helper.append_op(
type='shuffle_batch',
inputs={'X': x, 'Seed': seed},
Expand Down
6 changes: 4 additions & 2 deletions test/legacy_test/test_norm_nn_grad.py
Original file line number Diff line number Diff line change
Expand Up @@ -71,7 +71,8 @@ def test_grad(self):
if core.is_compiled_with_cuda():
places.append(base.CUDAPlace(0))
for p in places:
self.func(p)
with paddle.pir_utils.OldIrGuard():
self.func(p)
self.func_pir(p)


Expand Down Expand Up @@ -281,7 +282,8 @@ def test_grad(self):
if core.is_compiled_with_cuda():
places.append(base.CUDAPlace(0))
for p in places:
self.func(p)
with paddle.pir_utils.OldIrGuard():
self.func(p)
self.func_pir(p)


Expand Down
60 changes: 58 additions & 2 deletions test/legacy_test/test_shuffle_batch_op.py
Original file line number Diff line number Diff line change
Expand Up @@ -19,7 +19,9 @@
import numpy as np
from op_test import OpTest

import paddle
from paddle import base
from paddle.pir_utils import test_with_pir_api


class TestShuffleBatchOpBase(OpTest):
Expand All @@ -38,6 +40,8 @@ def _get_places(self):

def setUp(self):
self.op_type = 'shuffle_batch'
self.python_api = paddle.incubate.layers.shuffle_batch
self.python_out_sig = ["Out"]
self.dtype = np.float64
self.shape = self.get_shape()
x = self.gen_random_array(self.shape)
Expand All @@ -53,7 +57,7 @@ def setUp(self):
self.attrs = {'startup_seed': 1}

def test_check_output(self):
self.check_output_customized(self.verify_output)
self.check_output_customized(self.verify_output, check_pir=True)

def verify_output(self, outs):
x = np.copy(self.inputs['X'])
Expand All @@ -76,13 +80,65 @@ def sort_array(self, array):
return np.reshape(np.array(arr_list), shape)

def test_check_grad(self):
self.check_grad(['X'], 'Out', check_dygraph=False)
self.check_grad(['X'], 'Out', check_dygraph=False, check_pir=True)


class TestShuffleBatchOp2(TestShuffleBatchOpBase):
def get_shape(self):
return (4, 30)


class TestShuffleBatchAPI(unittest.TestCase):
def setUp(self):
self.places = [paddle.CPUPlace()]
if not os.name == 'nt' and paddle.is_compiled_with_cuda():
self.places.append(paddle.CUDAPlace(0))
paddle.enable_static()

def tearDown(self):
paddle.disable_static()

@test_with_pir_api
def test_seed_without_tensor(self):
def api_run(seed, place=paddle.CPUPlace()):
main_prog, startup_prog = (
paddle.static.Program(),
paddle.static.Program(),
)
with paddle.static.program_guard(main_prog, startup_prog):
x = paddle.static.data(name='x', shape=[-1, 4], dtype='float32')
out = paddle.incubate.layers.shuffle_batch(x, seed=seed)
exe = paddle.static.Executor(place=place)
feed = {'x': np.random.random((10, 4)).astype('float32')}
exe.run(startup_prog)
_ = exe.run(main_prog, feed=feed, fetch_list=[out])

for place in self.places:
api_run(None, place=place)
api_run(1, place=place)

@test_with_pir_api
def test_seed_with_tensor(self):
def api_run(place=paddle.CPUPlace()):
main_prog, startup_prog = (
paddle.static.Program(),
paddle.static.Program(),
)
with paddle.static.program_guard(main_prog, startup_prog):
x = paddle.static.data(name='x', shape=[-1, 4], dtype='float32')
seed = paddle.static.data(name='seed', shape=[1], dtype='int64')
out = paddle.incubate.layers.shuffle_batch(x, seed=seed)
exe = paddle.static.Executor(place=place)
feed = {
'x': np.random.random((10, 4)).astype('float32'),
'seed': np.array([1]).astype('int64'),
}
exe.run(startup_prog)
_ = exe.run(main_prog, feed=feed, fetch_list=[out])

for place in self.places:
api_run(place=place)


if __name__ == '__main__':
unittest.main()
7 changes: 5 additions & 2 deletions test/legacy_test/test_while_op.py
Original file line number Diff line number Diff line change
Expand Up @@ -159,6 +159,7 @@ def test_bad_x():


class TestIgnoreVarNameInWhile(unittest.TestCase):
@test_with_pir_api
def test_ignore_var(self):
def cond(i, ten, temp, y):
return i < ten
Expand Down Expand Up @@ -189,9 +190,11 @@ def body_func(i, ten, batch_info, origin_seq):
exe = base.Executor(base.CPUPlace())
exe.run(base.default_startup_program())

input_x = numpy.array([[1, 2, 3, 4], [4, 5, 6, 7], [7, 8, 9, 10]])
input_x = numpy.array(
[[1.0, 2.0, 3.0, 4.0], [4.0, 5.0, 6.0, 7.0], [7.0, 8.0, 9.0, 10.0]]
).astype('float32')
input_x = input_x.reshape(3, 1, 4)
input_y = numpy.array([[10], [12], [33]])
input_y = numpy.array([[10.0], [12.0], [33.0]]).astype('float32')
input_y = input_y.reshape(3, 1, 1)

(res,) = exe.run(
Expand Down