Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

【Hackathon 7th No.23】NO.23 为 Paddle 新增 ParameterDict API -part #68270

Merged
merged 10 commits into from
Oct 11, 2024
Merged
Show file tree
Hide file tree
Changes from 2 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
9 changes: 8 additions & 1 deletion python/paddle/nn/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -77,7 +77,13 @@

# TODO: import all neural network related api under this directory,
# including layers, linear, conv, rnn etc.
from .layer.container import LayerDict, LayerList, ParameterList, Sequential
from .layer.container import (
LayerDict,
LayerList,
ParameterDict,
ParameterList,
Sequential,
)
from .layer.conv import (
Conv1D,
Conv1DTranspose,
Expand Down Expand Up @@ -243,6 +249,7 @@
'TransformerEncoder',
'Softmax',
'Softmax2D',
'ParameterDict',
'ParameterList',
'Conv2D',
'Softshrink',
Expand Down
110 changes: 110 additions & 0 deletions python/paddle/nn/layer/container.py
Original file line number Diff line number Diff line change
Expand Up @@ -319,6 +319,116 @@ def update(
self.add_sublayer(kv[0], kv[1])


class ParameterDict(Layer):
"""
Holds parameters in a dictionary.

ParameterDict can be indexed like a regular Python dictionary, but Parameters it contains are properly registered.

Parameters:
values (iterable, optional): a mapping (dictionary) of (string : Any) or an iterable of key-value pairs of type (string, Any)

Examples:
.. code-block:: python

>>> import paddle

>>> class MyLayer(paddle.nn.Layer):
... def __init__(self, num_stacked_param):
... super().__init__()
... # create ParameterDict with iterable Parameters
... self.params = paddle.nn.ParameterDict(
... {'t' + str(i): paddle.create_parameter(shape=[2, 2], dtype='float32') for i in range(num_stacked_param)})
Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Suggested change
... {'t' + str(i): paddle.create_parameter(shape=[2, 2], dtype='float32') for i in range(num_stacked_param)})
... {f"t{i}": paddle.create_parameter(shape=[2, 2], dtype='float32') for i in range(num_stacked_param)})

...
... def forward(self, x):
... for i, (key, p) in enumerate(self.params):
... x = paddle.multiply(x, p)
... return x
...
>>> x = paddle.uniform(shape=[5, 2], dtype='float32')
>>> num_stacked_param = 4
>>> model = MyLayer(num_stacked_param)
>>> print(len(model.params))
4
>>> res = model(x)
>>> print(res.shape)
[5, 2]

>>> replaced_param = paddle.create_parameter(shape=[2, 3], dtype='float32')
>>> model.params['t3'] = replaced_param # replace t3 param
>>> res = model(x)
>>> print(res.shape)
[5, 3]
>>> model.params['t4'] = paddle.create_parameter(shape=[3, 4], dtype='float32') # append param
>>> print(len(model.params))
5
>>> res = model(x)
>>> print(res.shape)
[5, 4]
"""

def __init__(
self,
parameters: (
ParameterDict
| typing.Mapping[str, Tensor]
Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

为什么要用 typing.Mapping 而不是已经 import 了的 collections.abc.Mapping

| Sequence[tuple[str, Tensor]]
| None
) = None,
) -> None:
super().__init__()
if parameters is not None:
self.update(parameters)

def __getitem__(self, key: str) -> Tensor:
with param_guard(self._parameters):
return self._parameters[key]

def __setitem__(self, key: str, param: Tensor) -> None:
assert isinstance(param, Parameter)
setattr(self, key, param)

def __len__(self) -> int:
return len(self._parameters)

def __iter__(self) -> Iterator[tuple[str, Tensor]]:
Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

为什么这个 __iter__ 返回结果的语义与 Python 的 dict 不一样,不是 dict 的 key 的 iterator,而是 key-value pair 的 iterator?这里的设计是基于什么?

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

抱歉,这里是多加了的,参考layerdict然后看岔了

Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Suggested change
def __iter__(self) -> Iterator[tuple[str, Tensor]]:
def __iter__(self) -> Iterator[str]:
  1. 类型提示没改
  2. param_guard 不需要,因为返回的 iterator 访问不到参数

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

好的好的,已经修改了

with param_guard(self._parameters):
return iter(self._parameters.items())

def update(
self,
parameters: (
ParameterDict
| typing.Mapping[str, Tensor]
Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

同上

| Sequence[tuple[str, Tensor]]
),
) -> None:
"""Update a given parameter at the end of the dict.

Parameters:
parameters (Parameter): parameter to update
"""
assert isinstance(parameters, Iterable), (
"The type of parameters is not iterable of key/value pairs, the type of sublayers is "
+ type(parameters).__name__
)

if isinstance(parameters, (OrderedDict, ParameterDict, Mapping)):
for key, parameter in parameters.items():
self.add_parameter(key, parameter)
else:
for i, kv in enumerate(parameters):
if len(kv) != 2:
raise ValueError(
"The length of the "
+ str(i)
+ "'s element in parameters is "
+ str(len(kv))
+ ", which must be 2."
)
Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

用 f-string

self.add_parameter(kv[0], kv[1])


class ParameterList(Layer):
"""ParameterList Container.

Expand Down
90 changes: 90 additions & 0 deletions test/legacy_test/test_imperative_container_parameterdict.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,90 @@
# Copyright (c) 2024 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import unittest
from collections import OrderedDict

import numpy as np

import paddle
from paddle import base


class MyLayer(paddle.nn.Layer):
def __init__(self, num_stacked_param):
super().__init__()
# create ParameterList with iterable Parameters
self.params = self.paddle_imperative_ParameterDict(num_stacked_param)

def paddle_imperative_ParameterDict(self, num_stacked_param):
return paddle.nn.ParameterDict(
[
(
't' + str(i),
paddle.create_parameter(shape=[2, 2], dtype='float32'),
)
for i in range(num_stacked_param)
]
)

def forward(self, x):
for i, (key, _) in enumerate(self.params):
x = paddle.matmul(x, self.params[key])
return x


class TestImperativeContainerParameterDict(unittest.TestCase):
def paramter_dict(self):
self.place = (
paddle.CUDAPlace(0)
if paddle.is_compiled_with_cuda()
else paddle.CPUPlace()
)
data_np = np.random.uniform(-1, 1, [5, 2]).astype('float32')
with base.dygraph.guard():
x = paddle.to_tensor(data_np)
num_stacked_param = 4
model = MyLayer(num_stacked_param)
self.assertEqual(len(model.params), num_stacked_param)
res = model(x)
self.assertListEqual(res.shape, [5, 2])
loss = paddle.mean(res)
loss.backward()

model.params['t' + str(num_stacked_param - 1)] = (
paddle.create_parameter(shape=[2, 3], dtype='float32')
)
res = model(x)
self.assertListEqual(res.shape, [5, 3])
parmeter = OrderedDict(
[
(
't' + str(num_stacked_param),
paddle.create_parameter(shape=[3, 4], dtype='float32'),
)
]
)
model.params.update(parmeter)
self.assertEqual(len(model.params), num_stacked_param + 1)
res = model(x)
self.assertListEqual(res.shape, [5, 4])
loss = paddle.mean(res)
loss.backward()

def test_paramter_dict(self):
self.paramter_dict()


if __name__ == '__main__':
unittest.main()