Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

【Paddle Toolkit Development Competition No.2】[Custom OP] Add contiguous api support to paddle::Tensor #68748

Merged
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
18 changes: 18 additions & 0 deletions paddle/phi/api/include/tensor.h
Original file line number Diff line number Diff line change
Expand Up @@ -637,6 +637,24 @@ class PADDLE_API Tensor final {
*/
Tensor to_dense() const;

/* Part 12: Contiguous methods */

/**
* @brief Determine whether tensor is contiguous
*
* @return bool
*/
bool is_contiguous() const;

/**
* @brief Returns a contiguous in memory tensor containing the same data as
* current Tensor. If self tensor is already contiguous, this function returns
* the current Tensor.
BeingGod marked this conversation as resolved.
Show resolved Hide resolved
*
* @return Tensor
*/
Tensor contiguous();

private:
/**
* [ Why use abstract TensorImpl interface here? ]
Expand Down
48 changes: 48 additions & 0 deletions paddle/phi/api/lib/tensor.cc
Original file line number Diff line number Diff line change
Expand Up @@ -22,6 +22,7 @@ limitations under the License. */

#include "paddle/common/ddim.h"
#include "paddle/phi/api/include/context_pool.h"
#include "paddle/phi/api/lib/data_transform.h"
#include "paddle/phi/api/lib/utils/allocator.h"
#include "paddle/phi/backends/gpu/gpu_context.h"
#include "paddle/phi/backends/gpu/gpu_info.h"
Expand Down Expand Up @@ -508,4 +509,51 @@ void Tensor::reset_inplace_version(bool set_to_zero) {
}
}

/* Part 7: Contiguous methods */

bool Tensor::is_contiguous() const {
if (is_dense_tensor() || is_dist_tensor()) {
phi::DenseTensor *dense_tensor = nullptr;
if (is_dist_tensor()) {
dense_tensor = static_cast<phi::distributed::DistTensor *>(impl_.get())
->unsafe_mutable_value();
} else {
dense_tensor = static_cast<phi::DenseTensor *>(impl_.get());
}
return dense_tensor->meta().is_contiguous();
} else {
PADDLE_THROW(
common::errors::Unimplemented("Only support is_contiguous operation on "
"DenseTensor or DistTensor now."));
}
}

Tensor Tensor::contiguous() {
if (is_dense_tensor() || is_dist_tensor()) {
phi::DenseTensor *dense_tensor = nullptr;
if (is_dist_tensor()) {
dense_tensor = static_cast<phi::distributed::DistTensor *>(impl_.get())
->unsafe_mutable_value();
} else {
dense_tensor = static_cast<phi::DenseTensor *>(impl_.get());
}
PADDLE_ENFORCE_NOT_NULL(dense_tensor,
common::errors::InvalidArgument(
"TensorImpl with nullptr is not supported"));
if (!dense_tensor->meta().is_contiguous()) {
auto new_dense_tensor = std::make_shared<phi::DenseTensor>();
*new_dense_tensor = paddle::experimental::Trans2Contiguous(*dense_tensor);

return Tensor(std::shared_ptr<phi::TensorBase>(new_dense_tensor),
autograd_meta_,
name_);
} else {
return *this;
}
} else {
PADDLE_THROW(common::errors::Unimplemented(
"Only support contiguous operation on DenseTensor or DistTensor now."));
}
}

} // namespace paddle
2 changes: 2 additions & 0 deletions test/custom_op/CMakeLists.txt
Original file line number Diff line number Diff line change
Expand Up @@ -71,6 +71,8 @@ if(WITH_TESTING)
py_test(test_custom_tanh_double_grad SRCS test_custom_tanh_double_grad.py)
py_test(test_custom_inplace SRCS test_custom_inplace.py)
py_test(test_custom_optional SRCS test_custom_optional.py)
py_test(test_custom_contiguous SRCS test_custom_contiguous.py)
set_tests_properties(test_custom_contiguous PROPERTIES TIMEOUT 180)

# other tests
py_test(test_sysconfig SRCS test_sysconfig.py)
Expand Down
62 changes: 62 additions & 0 deletions test/custom_op/custom_contiguous.cc
Original file line number Diff line number Diff line change
@@ -0,0 +1,62 @@
// Copyright (c) 2024 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include <iostream>
#include <vector>

#include "paddle/extension.h"

static paddle::Tensor Transpose(const paddle::Tensor& t,
int64_t dim0,
int64_t dim1) {
int len = t.shape().size();
dim0 = dim0 >= 0 ? dim0 : len + dim0;
dim1 = dim1 >= 0 ? dim1 : len + dim1;
PD_CHECK(dim0 >= 0 && dim0 < len,
"dim0 not in range"
"dim0:%d ,range:%d",
dim0,
len);
PD_CHECK(dim1 >= 0 && dim1 < len,
"dim1 not in range"
"dim1:%d ,range:%d",
dim1,
len);
std::vector<int> transpose_perm(len);
std::iota(transpose_perm.begin(), transpose_perm.end(), 0);
transpose_perm[dim0] = dim1;
transpose_perm[dim1] = dim0;
// maybe there is another way to avoid experiment api
return paddle::experimental::transpose(t, transpose_perm);
}

std::vector<paddle::Tensor> ContiguousForward(paddle::Tensor& x) { // NOLINT
PD_CHECK(x.shape().size() == 2, "x must be a 2-d tensor.");

x = x.contiguous();
PD_CHECK(x.is_contiguous(), "Check failed !");

auto non_contiguous_x = Transpose(x, 0, 1);
PD_CHECK(!non_contiguous_x.is_contiguous(), "Check failed !");

auto contiguous_x = non_contiguous_x.contiguous();
PD_CHECK(contiguous_x.is_contiguous(), "Check failed !");

return {contiguous_x};
}

PD_BUILD_OP(custom_contiguous)
.Inputs({"X"})
.Outputs({"Out"})
.SetKernelFn(PD_KERNEL(ContiguousForward));
73 changes: 73 additions & 0 deletions test/custom_op/test_custom_contiguous.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,73 @@
# Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
import unittest

import numpy as np
from utils import (
extra_cc_args,
extra_nvcc_args,
paddle_includes,
paddle_libraries,
)
BeingGod marked this conversation as resolved.
Show resolved Hide resolved
BeingGod marked this conversation as resolved.
Show resolved Hide resolved

import paddle
from paddle.utils.cpp_extension import get_build_directory, load
from paddle.utils.cpp_extension.extension_utils import run_cmd

# Because Windows don't use docker, the shared lib already exists in the
# cache dir, it will not be compiled again unless the shared lib is removed.
file = f'{get_build_directory()}\\custom_contiguous\\custom_contiguous.pyd'
if os.name == 'nt' and os.path.isfile(file):
cmd = f'del {file}'
run_cmd(cmd, True)

custom_module = load(
name='custom_contiguous',
sources=['custom_contiguous.cc'],
extra_include_paths=paddle_includes, # add for Coverage CI
extra_library_paths=paddle_libraries,
extra_cxx_cflags=extra_cc_args, # test for cc flags
extra_cuda_cflags=extra_nvcc_args, # test for nvcc flags
verbose=True,
)


def custom_contiguous_dynamic(device, np_x):
paddle.set_device(device)

x = paddle.to_tensor(np_x, dtype="float32")
x.stop_gradient = True

x = x.transpose((1, 0))

out = custom_module.custom_contiguous(x)

assert out.is_contiguous()


class TestCustomCastOp(unittest.TestCase):
def setUp(self):
self.dtypes = ['float32', 'float64']
paddle.set_flags({"FLAGS_use_stride_kernel": 1})

def test_dynamic(self):
for dtype in self.dtypes:
x = np.random.uniform(-1, 1, [4, 8]).astype("float32")
custom_contiguous_dynamic('cpu', x)


if __name__ == '__main__':
unittest.main()