Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Change cos_sim to use CosSimLayer layer when size=1 and rename convex_comb_layer to linear_comb_layer #72

Merged
merged 3 commits into from
Sep 14, 2016
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
18 changes: 9 additions & 9 deletions doc/ui/api/trainer_config_helpers/layers.rst
Original file line number Diff line number Diff line change
Expand Up @@ -245,10 +245,10 @@ addto_layer
:members: addto_layer
:noindex:

convex_comb_layer
linear_comb_layer
-----------------
.. automodule:: paddle.trainer_config_helpers.layers
:members: convex_comb_layer
:members: linear_comb_layer
:noindex:

interpolation_layer
Expand Down Expand Up @@ -280,7 +280,13 @@ tensor_layer
.. automodule:: paddle.trainer_config_helpers.layers
:members: tensor_layer
:noindex:


cos_sim
-------
.. automodule:: paddle.trainer_config_helpers.layers
:members: cos_sim
:noindex:

trans_layer
------------
.. automodule:: paddle.trainer_config_helpers.layers
Expand Down Expand Up @@ -341,12 +347,6 @@ rank_cost
:members: rank_cost
:noindex:

cos_sim
-------
.. automodule:: paddle.trainer_config_helpers.layers
:members: cos_sim
:noindex:

crf_layer
-----------------
.. automodule:: paddle.trainer_config_helpers.layers
Expand Down
16 changes: 9 additions & 7 deletions paddle/gserver/layers/ConvexCombinationLayer.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -21,18 +21,20 @@ limitations under the License. */
namespace paddle {

/**
* @brief A layer for convex weighted average of vectors,
* @brief A layer for weighted sum of vectors,
* which is used in NEURAL MACHINE TRANSLATION BY JOINTLY LEARNING TO ALIGN AND
* TRANSLATE
* - Input: the first input contains the convex weights (batchSize x weightDim),
* and the shape of second input is (batchSize x (weightdim*dataDim)).
* - Output: the shape of output is (batchSize x dataDim).
* - Input: the the size of the first input is weightDim,
* and the size of the second input is weightdim * dataDim.
* - Output: the sizeof the output is dataDim
* \f[
* out[i][j] = \sum_{j}(in0(i, j) * in1(i,j + i * dataDim)),
* i = 0,1,...,(batchSize-1); j = 0, 1,...,(dataDim-1)
* out(j) = \sum_{i}(in0(i) * in1(i,j + i * dataDim)),
* i = 0,1,...,(weightDim-1); j = 0, 1,...,(dataDim-1)
* \f]
* Note that the above computation is for one sample. Multiple samples are
* processed in one batch.
*
* The config file api is convex_comb_layer.
* The config file api is linear_comb_layer.
*/
class ConvexCombinationLayer : public Layer {
protected:
Expand Down
4 changes: 2 additions & 2 deletions paddle/gserver/layers/CosSimLayer.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -48,7 +48,7 @@ void CosSimLayer::forward(PassType passType) {
REGISTER_TIMER_INFO("CosFwAtvTimer", getName().c_str());
MatrixPtr prevOut1 = getInputValue(0);
MatrixPtr prevOut2 = getInputValue(1);
outV->cosSim(*prevOut1, *prevOut2, kCosSimScale_);
outV->cosSim(*prevOut1, *prevOut2, config_.cos_scale());
}
}

Expand All @@ -59,7 +59,7 @@ void CosSimLayer::backward(const UpdateCallback& callback) {

outG->cosSimDerivative(*this->getOutputValue(), *getInputValue(0),
*getInputValue(1), *getInputGrad(0),
*getInputGrad(1), kCosSimScale_);
*getInputGrad(1), config_.cos_scale());
}
}

Expand Down
4 changes: 1 addition & 3 deletions paddle/gserver/layers/CosSimLayer.h
Original file line number Diff line number Diff line change
Expand Up @@ -36,16 +36,14 @@ namespace paddle {
class CosSimLayer : public Layer {
public:
explicit CosSimLayer(const LayerConfig& config)
: Layer(config), kCosSimScale_(5.0f) {}
: Layer(config) {}

~CosSimLayer() {}

bool init(const LayerMap& layerMap, const ParameterMap& parameterMap);

void forward(PassType passType);
void backward(const UpdateCallback& callback = nullptr);

const real kCosSimScale_;
};

} // namespace paddle
2 changes: 2 additions & 0 deletions python/CMakeLists.txt
Original file line number Diff line number Diff line change
Expand Up @@ -22,6 +22,8 @@ find_python_module(pip REQUIRED)
find_python_module(wheel REQUIRED)
find_python_module(google.protobuf REQUIRED)

add_subdirectory(paddle/trainer_config_helpers/tests)

install(DIRECTORY ${CMAKE_CURRENT_BINARY_DIR}/dist/
DESTINATION opt/paddle/share/wheels
)
8 changes: 8 additions & 0 deletions python/paddle/trainer/config_parser.py
Original file line number Diff line number Diff line change
Expand Up @@ -2264,6 +2264,9 @@ def __init__(
name, 'convex_comb', size, inputs=inputs, device=device)
config_assert(len(self.inputs) == 2,
'ConvexCombinationLayer must have 2 inputs')
config_assert(
size * self.get_input_layer(0).size == self.get_input_layer(1).size,
'Wrong input size for ConvexCombinationLayer')
self.set_layer_size(size)

@config_layer('interpolation')
Expand Down Expand Up @@ -2313,6 +2316,9 @@ def __init__(
self.config.cos_scale = cos_scale
config_assert(len(self.inputs) == 2,
'CosSimVecMatLayer must have 2 inputs')
config_assert(
size * self.get_input_layer(0).size == self.get_input_layer(1).size,
'Wrong input size for CosSimVecMatLayer')

@config_layer('sampling_id')
class SamplingIdLayer(LayerBase):
Expand Down Expand Up @@ -2361,13 +2367,15 @@ def __init__(
self,
name,
inputs,
cos_scale=5,
device=None):
super(CosSimLayer, self).__init__(
name, 'cos', 1, inputs=inputs, device=device)
config_assert(len(self.inputs) == 2, 'CosSimLayer must have 2 inputs')
config_assert(
self.get_input_layer(0).size == self.get_input_layer(1).size,
'inputs of CosSimLayer must have same dim')
self.config.cos_scale = cos_scale


@config_layer('tensor')
Expand Down
94 changes: 60 additions & 34 deletions python/paddle/trainer_config_helpers/layers.py
Original file line number Diff line number Diff line change
Expand Up @@ -47,6 +47,7 @@
'BaseGeneratedInput', 'conv_operator', 'conv_shift_layer',
'tensor_layer', 'selective_fc_layer', 'sampling_id_layer',
'slope_intercept_layer', 'trans_full_matrix_projection',
'linear_comb_layer',
'convex_comb_layer', 'ctc_layer', 'crf_layer', 'crf_decoding_layer',
'cross_entropy_with_selfnorm', 'cross_entropy',
'multi_binary_label_cross_entropy',
Expand All @@ -70,7 +71,8 @@ class LayerType(object):
POOLING_AVG = 'average'
FC_LAYER = "fc"
COST = 'cost'
COSINE_SIM = 'cos_vm'
COSINE_SIM_VEC = 'cos_vm'
COSINE_SIM = 'cos'
HSIGMOID = 'hsigmoid'
CONV_LAYER = "conv"
POOL_LAYER = "pool"
Expand Down Expand Up @@ -102,7 +104,7 @@ class LayerType(object):
SEL_FC_LAYER = "selective_fc"
SAMPLING_ID_LAYER = "sampling_id"
SLOPE_INTERCEPT_LAYER = "slope_intercept"
CONVEX_COMBINATION_LAYER = "convex_comb"
LINEAR_COMBINATION_LAYER = "convex_comb"
BLOCK_EXPAND = "blockexpand"

CTC_LAYER = "ctc"
Expand Down Expand Up @@ -1171,13 +1173,16 @@ def power_layer(input, weight, name=None, layer_attr=None):
@layer_support()
def scaling_layer(input, weight, name=None, layer_attr=None):
"""
A layer for each row of a matrix, multiplying with a element of a vector.
A layer for multiplying input vector by weight scalar.

.. math::
y.row[i] = w[i] * x.row[i]
y = w x

where :math:`x` is (batchSize x dataDim) input, :math:`w` is
(batchSize x 1) weight vector, and :math:`y` is (batchSize x dataDim) output.
where :math:`x` is size=dataDim input, :math:`w` is size=1 weight,
and :math:`y` is size=dataDim output.

Note that the above computation is for one sample. Multiple samples are
processed in one batch.

The example usage is:

Expand Down Expand Up @@ -1251,11 +1256,14 @@ def cos_sim(a, b, scale=5, size=1, name=None, layer_attr=None):

.. math::
similarity = cos(\\theta) = {\\mathbf{a} \\cdot \\mathbf{b}
\\over \\|\\mathbf{b}\\| \\|\\mathbf{b}\\|}
\\over \\|\\mathbf{a}\\| \\|\\mathbf{b}\\|}

The size of a is M, size of b is M*N,
Similarity will be calculated N times by step M. The output size is
N. The scale will be multiplied to similarity.

And the input dimension is :math:`a \in R^M`, :math:`b \in R^{MN}`. The
similarity will be calculated N times by step M. The output dimension is
:math:`R^N`. The scale will be multiplied to similarity.
Note that the above computation is for one sample. Multiple samples are
processed in one batch.

:param name: layer name
:type name: basestring
Expand All @@ -1272,14 +1280,23 @@ def cos_sim(a, b, scale=5, size=1, name=None, layer_attr=None):
:return: LayerOutput object.
:rtype: LayerOutput
"""
Layer(
name=name,
type=LayerType.COSINE_SIM,
size=size,
cos_scale=scale,
inputs=[a.name, b.name],
**ExtraLayerAttribute.to_kwargs(layer_attr)
)
if size == 1:
Layer(
name=name,
type=LayerType.COSINE_SIM,
cos_scale=scale,
inputs=[a.name, b.name],
**ExtraLayerAttribute.to_kwargs(layer_attr)
)
else:
Layer(
name=name,
type=LayerType.COSINE_SIM_VEC,
size=size,
cos_scale=scale,
inputs=[a.name, b.name],
**ExtraLayerAttribute.to_kwargs(layer_attr)
)
return LayerOutput(name, LayerType.COSINE_SIM, parents=[a, b])

@wrap_name_default()
Expand Down Expand Up @@ -2911,29 +2928,37 @@ def slope_intercept_layer(input, name=None, slope=1.0, intercept=0.0):


@wrap_name_default()
def convex_comb_layer(input, size, name=None):
def linear_comb_layer(weights, vectors, size, name=None):
"""
A layer for convex weighted average of vectors takes two inputs.
- Input: a vector containing the convex weights (batchSize x weightdim),
and a matrix in a vector form (batchSize x (weightdim * datadim)).
- Output: a vector (batchSize * datadim).
A layer for weighted sum of vectors takes two inputs.
- Input: size of weights is M
size of vectors is M*N
- Output: a vector of size=N

.. math::

y[i][j] = \sum_{j}(x_{1}(i, j) * x_{2}(i,j + i * dataDim)),
z(i) = \sum_{j=0}^{M-1} x(j) y(i+Nj)
where :math:`0 \le i \le N-1`

Or in the matrix notation:

.. math::

i = 0,1,...,(batchSize-1); j = 0, 1,...,(dataDim-1)
z = x^T Y

In this formular:
- :math:`x_{1}`: the first input.
- :math:`x_{2}`: the second input.
- :math:`y`: the output.
- :math:`x`: weights
- :math:`y`: vectors.
- :math:`z`: the output.

Note that the above computation is for one sample. Multiple samples are
processed in one batch.

The simple usage is:

.. code-block:: python

convex_comb = convex_comb_layer(input=inputs,
linear_comb = linear_comb_layer(weighs=weight, vectors=vectors,
size=elem_dim)

:param input: The input layers.
Expand All @@ -2946,15 +2971,16 @@ def convex_comb_layer(input, size, name=None):
:rtype: LayerOutput
"""

assert isinstance(input, list) or isinstance(input, tuple)
assert len(input) == 2
Layer(
name=name,
type=LayerType.CONVEX_COMBINATION_LAYER,
type=LayerType.LINEAR_COMBINATION_LAYER,
size=size,
inputs=[Input(input[0].name), Input(input[1].name)],
inputs=[Input(weights.name), Input(vectors.name)],
)
return LayerOutput(name, LayerType.CONVEX_COMBINATION_LAYER, input, size=size)
return LayerOutput(name, LayerType.LINEAR_COMBINATION_LAYER,
[weights, vectors], size=size)

convex_comb_layer = linear_comb_layer

@wrap_name_default()
def block_expand_layer(input,
Expand Down
5 changes: 5 additions & 0 deletions python/paddle/trainer_config_helpers/tests/CMakeLists.txt
Original file line number Diff line number Diff line change
@@ -0,0 +1,5 @@
#################### test_config_parser #########################
add_test(NAME layers_test
COMMAND ${PROJ_ROOT}/paddle/.set_python_path.sh -d ${PROJ_ROOT}/python/
python ${PROJ_ROOT}/python/paddle/trainer_config_helpers/tests/layers_test.py
WORKING_DIRECTORY ${PROJ_ROOT}/python/paddle)
19 changes: 19 additions & 0 deletions python/paddle/trainer_config_helpers/tests/layers_test.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,19 @@
# Copyright (c) 2016 Baidu, Inc. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from paddle.trainer.config_parser import parse_config_and_serialize

if __name__ == '__main__':
parse_config_and_serialize(
'trainer_config_helpers/tests/layers_test_config.py', '')
43 changes: 43 additions & 0 deletions python/paddle/trainer_config_helpers/tests/layers_test_config.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,43 @@
# Copyright (c) 2016 Baidu, Inc. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from paddle.trainer_config_helpers import *

num_classes = 5

x = data_layer(name="input1", size=3)
y = data_layer(name="input2", size=5)

x1 = fc_layer(input=x, size=5)
y1 = fc_layer(input=y, size=5)
y2 = fc_layer(input=y, size=15)

cos1 = cos_sim(a=x1, b=y1)
cos3 = cos_sim(a=x1, b=y2, size=3)

linear_comb = linear_comb_layer(weights=x1, vectors=y2, size=3)

out = fc_layer(input=[cos1, cos3, linear_comb],
size=num_classes,
act=SoftmaxActivation())

outputs(classification_cost(out, data_layer(name="label", size=num_classes)))

settings(
batch_size=10,
learning_rate=2e-3,
learning_method=AdamOptimizer(),
regularization=L2Regularization(8e-4),
gradient_clipping_threshold=25
)