Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Implement Book chapter 02 in distributed framework #7629

Merged
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Original file line number Diff line number Diff line change
@@ -0,0 +1,87 @@
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
#
#Licensed under the Apache License, Version 2.0 (the "License");
#you may not use this file except in compliance with the License.
#You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
#Unless required by applicable law or agreed to in writing, software
#distributed under the License is distributed on an "AS IS" BASIS,
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#See the License for the specific language governing permissions and
#limitations under the License.
from __future__ import print_function
import numpy as np
import paddle.v2 as paddle
import paddle.v2.fluid as fluid
import os

BATCH_SIZE = 128
PASS_NUM = 100

images = fluid.layers.data(name='x', shape=[784], dtype='float32')

# TODO(aroraabhinav) Add regularization and error clipping after
# Issue 7432(https://github.com/PaddlePaddle/Paddle/issues/7432) is resolved.
hidden1 = fluid.layers.fc(input=images, size=128, act='relu')
hidden2 = fluid.layers.fc(input=hidden1, size=64, act='relu')
predict = fluid.layers.fc(input=hidden2, size=10, act='softmax')

label = fluid.layers.data(name='y', shape=[1], dtype='int64')

cost = fluid.layers.cross_entropy(input=predict, label=label)
avg_cost = fluid.layers.mean(x=cost)

optimizer = fluid.optimizer.Momentum(learning_rate=0.001, momentum=0.9)
optimize_ops, params_grads = optimizer.minimize(avg_cost)

accuracy = fluid.evaluator.Accuracy(input=predict, label=label)

train_reader = paddle.batch(
paddle.reader.shuffle(
paddle.dataset.mnist.train(), buf_size=8192),
batch_size=BATCH_SIZE)

place = fluid.CPUPlace()
exe = fluid.Executor(place)

t = fluid.DistributeTranspiler()
# all parameter server endpoints list for spliting parameters
pserver_endpoints = os.getenv("PSERVERS")
# server endpoint for current node
current_endpoint = os.getenv("SERVER_ENDPOINT")
# run as trainer or parameter server
training_role = os.getenv("TRAINING_ROLE",
"TRAINER") # get the training role: trainer/pserver
t.transpile(optimize_ops, params_grads, pservers=pserver_endpoints, trainers=2)

if training_role == "PSERVER":
if not current_endpoint:
print("need env SERVER_ENDPOINT")
exit(1)
pserver_prog = t.get_pserver_program(current_endpoint, optimize_ops)
exe.run(fluid.default_startup_program())
exe.run(pserver_prog)
elif training_role == "TRAINER":
trainer_prog = t.get_trainer_program()
feeder = fluid.DataFeeder(feed_list=[images, label], place=place)
exe.run(fluid.default_startup_program())

for pass_id in range(PASS_NUM):
accuracy.reset(exe)
batch_id = 0
for data in train_reader():
loss, acc = exe.run(trainer_prog,
feed=feeder.feed(data),
fetch_list=[avg_cost] + accuracy.metrics)
pass_acc = accuracy.eval(exe)
if batch_id % 100 == 0:
print("batch_id %d, loss: %f, acc: %f" %
(batch_id, loss, pass_acc))
batch_id += 1

pass_acc = accuracy.eval(exe)
print("pass_id=" + str(pass_id) + " pass_acc=" + str(pass_acc))
else:
print("environment var TRAINER_ROLE should be TRAINER os PSERVER")