Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

add mine_hard_examples operator #7679

Merged
merged 7 commits into from
Feb 2, 2018
Merged
Show file tree
Hide file tree
Changes from 1 commit
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
184 changes: 184 additions & 0 deletions paddle/operators/mine_hard_examples_op.cc
Original file line number Diff line number Diff line change
@@ -0,0 +1,184 @@
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/operators/mine_hard_examples_op.h"

namespace paddle {
namespace operators {

class MineHardExamplesOp : public framework::OperatorWithKernel {
public:
using framework::OperatorWithKernel::OperatorWithKernel;

protected:
void InferShape(framework::InferShapeContext *ctx) const override {
PADDLE_ENFORCE(ctx->HasInput("ClsLoss"),
"Input(ClsLoss) of MineHardExamplesOp should not be null.");
PADDLE_ENFORCE(
ctx->HasInput("MatchIndics"),
"Input(MatchIndics) of MineHardExamplesOp should not be null.");
PADDLE_ENFORCE(ctx->HasInput("MatchDis"),
"Input(MatchDis) of MineHardExamplesOp should not be null.");
PADDLE_ENFORCE(
ctx->HasOutput("NegIndics"),
"Output(NegIndics) of MineHardExamplesOp should not be null.");
PADDLE_ENFORCE(
ctx->HasOutput("UpdatedMatchIndics"),
"Output(UpdatedMatchIndics) of MineHardExamplesOp should not be null.");

auto cls_loss_dims = ctx->GetInputDim("ClsLoss");
auto idx_dims = ctx->GetInputDim("MatchIndics");
auto dis_dims = ctx->GetInputDim("MatchDis");

PADDLE_ENFORCE_EQ(cls_loss_dims.size(), 2UL,
"The shape of ClsLoss is [N, Np].");
PADDLE_ENFORCE_EQ(idx_dims.size(), 2UL,
"The shape of MatchIndics is [N, Np].");
PADDLE_ENFORCE_EQ(dis_dims.size(), 2UL,
"The shape of MatchDis is [N, Np].");

if (ctx->HasInput("LocLoss")) {
auto loc_loss_dims = ctx->GetInputDim("LocLoss");
PADDLE_ENFORCE_EQ(loc_loss_dims.size(), 2UL,
"The shape of LocLoss is [N, Np].");
PADDLE_ENFORCE_EQ(cls_loss_dims[0], loc_loss_dims[0],
"Batch size of ClsLoss and LocLoss must be the same.");
PADDLE_ENFORCE_EQ(
cls_loss_dims[1], loc_loss_dims[1],
"Prior box number of ClsLoss and LocLoss must be the same.");
}

PADDLE_ENFORCE_EQ(
cls_loss_dims[0], idx_dims[0],
"Batch size of ClsLoss and MatchIndics must be the same.");
PADDLE_ENFORCE_EQ(
cls_loss_dims[1], idx_dims[1],
"Prior box number of ClsLoss and MatchIndics must be the same.");

PADDLE_ENFORCE_EQ(cls_loss_dims[0], dis_dims[0],
"Batch size of ClsLoss and MatchDis must be the same.");
PADDLE_ENFORCE_EQ(
cls_loss_dims[1], idx_dims[1],
"Prior box number of ClsLoss and MatchDis must be the same.");

auto mining_type =
GetMiningType(ctx->Attrs().Get<std::string>("mining_type"));

PADDLE_ENFORCE_NE(mining_type, MiningType::kNone,
"mining_type must be hard_example or max_negative");

if (mining_type == MiningType::kMaxNegative) {
auto neg_pos_ratio = ctx->Attrs().Get<float>("neg_pos_ratio");
auto neg_dis_threshold = ctx->Attrs().Get<float>("neg_dis_threshold");
PADDLE_ENFORCE_GT(
neg_pos_ratio, 0.0f,
"neg_pos_ratio must greater than zero in max_negative mode");
PADDLE_ENFORCE_GT(
neg_dis_threshold, 0.0f,
"neg_dis_threshold must greater than zero in max_negative mode");
Copy link
Contributor

@qingqing01 qingqing01 Jan 31, 2018

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

neg_pos_ratio and neg_dis_threshold are not always greater than 0.0f, just when mining_type is set to kMaxNegative.

} else if (mining_type == MiningType::kHardExample) {
auto sample_size = ctx->Attrs().Get<int>("sample_size");
PADDLE_ENFORCE_GT(
sample_size, 0,
"sample_size must greater than zero in hard_example mode");
}

ctx->SetOutputDim("UpdatedMatchIndics", idx_dims);
}

protected:
framework::OpKernelType GetExpectedKernelType(
const framework::ExecutionContext &ctx) const override {
return framework::OpKernelType(
framework::ToDataType(ctx.Input<framework::Tensor>("ClsLoss")->type()),
ctx.device_context());
}
};

class MineHardExamplesOpMaker : public framework::OpProtoAndCheckerMaker {
public:
MineHardExamplesOpMaker(OpProto *proto, OpAttrChecker *op_checker)
: OpProtoAndCheckerMaker(proto, op_checker) {
AddInput(
"ClsLoss",
"(Tensor, default Tensor<float>), The classification loss wit shape "
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

with

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

done

"[N, Np], N is the batch size and Np is the number of prior box.");
AddInput("LocLoss",
"(Tensor, optional, default Tensor<float>), The localization loss "
"wit shape [N, Np], N is the batch size and Np is the number of "
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

wit -> with

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

done

"prior box.")
.AsDispensable();
AddInput("MatchIndics",
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Typo error: MatchIndics -> MatchIndices , fix it in all files.

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

done

"(Tensor, Tensor<int>), Matched indices with shape [N, Np], N is "
"the batch size and Np is the number of prior box. "
"MatchIndics[i][j] equal -1 means box[j] does not match any "
"entity, otherwise means Box[j] is matched to row.");
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

There is no box[j] Box[j] in context,

MatchIndics[i][j] equal -1 means box[j] does not match any

If MatchIndics[i][j] is -1, it means the j-th prior box in i-th instance does not match any ground-truth box.

otherwise means Box[j] is matched to row."

please also modify this sentence.

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

done

AddInput("MatchDis",
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

MatchDis -> MatchDist ?

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

done

"(Tensor, default Tensor<float>) Matched indices with shape [N, "
"Np], N is the batch size and Np is the number of prior box.");
AddAttr<float>("neg_pos_ratio",
"(float) The ratio of the negative box to the positive "
"box. Use only when mining_type is equal to max_negative.")
.SetDefault(1.0);
AddAttr<float>("neg_dis_threshold",
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

dis -> dist?

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

done

"(float) The negative box dis value threshold. "
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

The negative overlap upper bound for the unmatched predictions.

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

done

"Use only when mining_type is equal to max_negative.")
.SetDefault(0.5);
AddAttr<int>("sample_size",
"(float) The max sample size of negative box. Use only when "
"mining_type is equal to hard_example.")
.SetDefault(0);
AddAttr<std::string>("mining_type",
"(float) The mining algorithm name, the value is "
"hard_example or max_negative.")
.SetDefault("max_negative")
.InEnum({"hard_example", "max_negative"});

AddOutput("NegIndics",
"(LoDTensor) The output of negative example indics.a lod tensor "
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

LoDTensor<int>

.a lod tensor

a LoDTensor

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

done

"with shape [Neg, 1]. The size of lod[0] is batch size, "
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

The size of lod[0] is batch size -> The size of lod[0] minus 1 is batch size

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

done

"and each element is the box index. "
"For example, the batch size is 2, the lod is [[0, 1, 2]], "
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

box -> prior box ?

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

done

"the sample 0's box 1(MatchIndics[0][1]) is selected, "
"and sample 1's box 0 is selected. The output NegIndics is "
"[[1], [0]].");

AddOutput("UpdatedMatchIndics",
"(Tensor) The output of updated MatchIndics, a tensor with "
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Tensor<int>

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

done

"shape [N, M]. Only update when mining_type is equal to "
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

The shape of UpdateMatchIndics is the same with MatchIndics, So change [N, M] to [N, Np] is better.

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

done

"hard_example. The input MatchIndics elements will be update to "
"-1 when it not in the highest loss list");
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

The elements in MatchIndics will be updated to -1 when it is in NegIndics.

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Comment has been changed


AddComment(R"DOC(
Mine hard examples Operator.
This operator implements hard example mining to select a subset of negative box indics.
For each image, selects the box with highest losses. subject to the condition that the box cannot have
an MatchDis > neg_dis_threshold when mining_type is equals max_negative. The selected number is
min(sample_size, max_negative_box_number) when mining_type is equals hard_example,
or min(neg_pos_ratio * positive_box_number, max_negative_box_number) when mining_type is
equals max_negative, where the max_negative_box_number is the count of MatchIndics elements with value -1.
)DOC");
}
};
} // namespace operators
} // namespace paddle

namespace ops = paddle::operators;
REGISTER_OP_WITHOUT_GRADIENT(mine_hard_examples, ops::MineHardExamplesOp,
ops::MineHardExamplesOpMaker);

REGISTER_OP_CPU_KERNEL(
mine_hard_examples,
ops::MineHardExamplesKernel<paddle::platform::CPUDeviceContext, float>,
ops::MineHardExamplesKernel<paddle::platform::CPUDeviceContext, double>);
148 changes: 148 additions & 0 deletions paddle/operators/mine_hard_examples_op.h
Original file line number Diff line number Diff line change
@@ -0,0 +1,148 @@
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once
#include "paddle/framework/op_registry.h"
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

The only CPU implementation can be removed to .cc file.

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

done


namespace paddle {
namespace operators {

enum MiningType { kNone = 0, kMaxNegative, kHardExample };

template <typename T>
bool SortScoreDescend(const std::pair<float, T>& pair1,
const std::pair<float, T>& pair2) {
return pair1.first > pair2.first;
}
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

I also add this function in multiclass_nms_op, we can make some common function in a common file in the future.

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

We can unify it at the time of merge.

Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

I also add this function in multiclass_nms_op, we can make some common function in a common file in the future.

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

We can unify it at the time of merge.


inline bool IsEligibleMining(const MiningType mining_type, const int match_idx,
const float match_dis,
const float neg_dis_threshold) {
if (mining_type == MiningType::kMaxNegative) {
return match_idx == -1 && match_dis < neg_dis_threshold;
} else if (mining_type == MiningType::kHardExample) {
return true;
} else {
return false;
}
}

MiningType GetMiningType(std::string str) {
if (str == "max_negative") {
return MiningType::kMaxNegative;
} else if (str == "hard_example") {
return MiningType::kHardExample;
} else {
return MiningType::kNone;
}
}

template <typename DeviceContext, typename T>
class MineHardExamplesKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& ctx) const override {
auto* in_cls_loss = ctx.Input<framework::Tensor>("ClsLoss");
auto* in_loc_loss = ctx.Input<framework::Tensor>("LocLoss");
auto* in_matched_indics = ctx.Input<framework::Tensor>("MatchIndics");
auto* in_match_dis = ctx.Input<framework::Tensor>("MatchDis");
float neg_pos_ratio = ctx.Attr<float>("neg_pos_ratio");
T neg_dis_threshold = static_cast<T>(ctx.Attr<float>("neg_dis_threshold"));
int sample_size = ctx.Attr<int>("sample_size");
MiningType mining_type =
GetMiningType(ctx.Attr<std::string>("mining_type"));

auto out_neg_indics = ctx.Output<framework::LoDTensor>("NegIndics");
auto out_match_indics = ctx.Output<framework::Tensor>("UpdatedMatchIndics");

framework::Copy(*in_matched_indics, ctx.GetPlace(), out_match_indics);

int batch_size = in_matched_indics->dims()[0];
int prior_num = in_matched_indics->dims()[1];

auto match_indices = framework::EigenMatrix<int>::From(*in_matched_indics);

auto match_indices_et =
framework::EigenMatrix<int>::From(*out_match_indics);
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

如果没用Eigen计算,代码是不是可以不引入Eigen? 直接访问T*就好?

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

I think the code is easier to understand by using eigen. It's just a habit.


auto match_dis = framework::EigenMatrix<float>::From(*in_match_dis);
auto cls_loss = framework::EigenMatrix<float>::From(*in_cls_loss);
auto loc_loss = framework::EigenMatrix<float>::From(*in_loc_loss);
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

loc_loss是可选输入,在使用时需要判断是否存在:

if (in_loc_loss) {}

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

done.


std::vector<std::vector<int>> all_neg_indices;
int all_neg_num = 0;
for (int n = 0; n < batch_size; ++n) {
std::vector<std::pair<float, size_t>> loss_idx;
int neg_sel = 0;
for (int m = 0; m < prior_num; ++m) {
if (IsEligibleMining(mining_type, match_indices(n, m), match_dis(n, m),
neg_dis_threshold)) {
T loss = cls_loss(n, m);
if (mining_type == MiningType::kHardExample) {
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

if (mining_type == MiningType::kHardExample && in_loc_loss) {

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

done

loss = cls_loss(n, m) + loc_loss(n, m);
}
loss_idx.push_back(std::make_pair(loss, m));
++neg_sel;
}
}
if (mining_type == MiningType::kMaxNegative) {
int num_pos = 0;
for (int m = 0; m < prior_num; ++m) {
if (match_indices(n, m) != -1) ++num_pos;
}
neg_sel = std::min(static_cast<int>(num_pos * neg_pos_ratio), neg_sel);
} else if (mining_type == MiningType::kHardExample) {
neg_sel = std::min(sample_size, neg_sel);
}
std::sort(loss_idx.begin(), loss_idx.end(), SortScoreDescend<int>);
std::set<int> sel_indices;
std::vector<int> neg_indices;
for (int n = 0; n < neg_sel; ++n) {
sel_indices.insert(loss_idx[n].second);
}
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

std::transform also can be used for this for loop.

http://zh.cppreference.com/w/cpp/algorithm/transform

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

done


for (int m = 0; m < prior_num; ++m) {
if (match_indices(n, m) > -1) {
if (mining_type == MiningType::kHardExample &&
sel_indices.find(m) == sel_indices.end()) {
match_indices_et(n, m) = -1;
}
} else {
if (sel_indices.find(m) != sel_indices.end()) {
neg_indices.push_back(m);
}
}
}
all_neg_indices.push_back(neg_indices);
all_neg_num += neg_indices.size();
}
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

The out_neg_indics_lod[0] can be calculated in for (int n = 0; n < batch_size; ++n) {}, then set LoD like: https://github.com/PaddlePaddle/Paddle/pull/7953/files#diff-7c37cd7e1af079fdcb9b9fef46650007R289

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

done


framework::LoD out_neg_indics_lod;
out_neg_indics_lod.resize(1);
int neg_offset = 0;
auto neg_data = out_neg_indics->mutable_data<int>(
framework::make_ddim({all_neg_num, 1}), ctx.GetPlace());
out_neg_indics_lod[0].push_back(neg_offset);
for (auto neg_indices : all_neg_indices) {
for (auto neg_idx : neg_indices) {
neg_data[neg_offset++] = neg_idx;
}
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

use std::copy instead of for loop.

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

done

out_neg_indics_lod[0].push_back(neg_offset);
}
out_neg_indics->set_lod(out_neg_indics_lod);
return;
}
};
} // namespace operators

} // namespace paddle
Loading